ﻻ يوجد ملخص باللغة العربية
An algebraic algorithm is developed for computation of invariants (generalized Casimir operators) of general Lie algebras over the real or complex number field. Its main tools are the Cartans method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. Unlike the first application of the algorithm in [J. Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602046], which deals with low-dimensional Lie algebras, here the effectiveness of the algorithm is demonstrated by its application to computation of invariants of solvable Lie algebras of general dimension $n<infty$ restricted only by a required structure of the nilradical. Specifically, invariants are calculated here for families of real/complex solvable Lie algebras. These families contain, with only a few exceptions, all the solvable Lie algebras of specific dimensions, for whom the invariants are found in the literature.
The invariants of solvable Lie algebras with nilradicals isomorphic to the algebra of strongly upper triangular matrices and diagonal nilindependent elements are studied exhaustively. Bases of the invariant sets of all such algebras are constructed b
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants (generalized Casimir operators) are found for three classes of Lie
A purely algebraic algorithm for computation of invariants (generalized Casimir operators) of Lie algebras by means of moving frames is discussed. Results on the application of the method to computation of invariants of low-dimensional Lie algebras a
The invariants of solvable triangular Lie algebras with one nilindependent diagonal element are studied exhaustively. Bases of the invariant sets of all such algebras are constructed using an original algebraic algorithm based on Cartans method of mo
A new purely algebraic algorithm is presented for computation of invariants (generalized Casimir operators) of Lie algebras. It uses the Cartans method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. The al