ﻻ يوجد ملخص باللغة العربية
A new purely algebraic algorithm is presented for computation of invariants (generalized Casimir operators) of Lie algebras. It uses the Cartans method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. The algorithm is applied, in particular, to computation of invariants of real low-dimensional Lie algebras. A number of examples are calculated to illustrate its effectiveness and to make a comparison with the same cases in the literature. Bases of invariants of the real solvable Lie algebras up to dimension five, the real six-dimensional nilpotent Lie algebras and the real six-dimensional solvable Lie algebras with four-dimensional nilradicals are newly calculated and listed in tables.
A purely algebraic algorithm for computation of invariants (generalized Casimir operators) of Lie algebras by means of moving frames is discussed. Results on the application of the method to computation of invariants of low-dimensional Lie algebras a
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants (generalized Casimir operators) are found for three classes of Lie
An algebraic algorithm is developed for computation of invariants (generalized Casimir operators) of general Lie algebras over the real or complex number field. Its main tools are the Cartans method of moving frames and the knowledge of the group of
In this thesis new objects to the existing set of invariants of Lie algebras are added. These invariant characteristics are capable of describing the nilpotent parametric continuum of Lie algebras. The properties of these invariants, in view of possi
The invariants of solvable triangular Lie algebras with one nilindependent diagonal element are studied exhaustively. Bases of the invariant sets of all such algebras are constructed using an original algebraic algorithm based on Cartans method of mo