ترغب بنشر مسار تعليمي؟ اضغط هنا

The Vlasov limit and its fluctuations for a system of particles which interact by means of a wave field

41   0   0.0 ( 0 )
 نشر من قبل Michael K. -H. Kiessling
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In two recent publications [Commun. PDE, vol.22, p.307--335 (1997), Commun. Math. Phys., vol.203, p.1--19 (1999)], A. Komech, M. Kunze and H. Spohn studied the joint dynamics of a classical point particle and a wave type generalization of the Newtonian gravity potential, coupled in a regularized way. In the present paper the many-body dynamics of this model is studied. The Vlasov continuum limit is obtained in form equivalent to a weak law of large numbers. We also establish a central limit theorem for the fluctuations around this limit.



قيم البحث

اقرأ أيضاً

We consider a kinetic model for a system of two species of particles interacting through a longrange repulsive potential and a reservoir at given temperature. The model is described by a set of two coupled Vlasov-Fokker-Plank equations. The important front solution, which represents the phase boundary, is a one-dimensional stationary solution on the real line with given asymptotic values at infinity. We prove the asymptotic stability of the front for small symmetric perturbations.
We study the presence of a logarithmic time scale in discrete approximations of Sawtooth Maps on the 2--torus. The techniques used are suggested by quantum mechanical similarities, and are based on a particular class of states on the torus, that fulf ill dynamical localization properties typical of quantum Coherent States.
We present a new proof of the convergence of the N-particle Schroedinger dynamics for bosons towards the dynamics generated by the Hartree equation in the mean-field limit. For a restricted class of two-body interactions, we obtain convergence estima tes uniform in the Planck constant , up to an exponentially small remainder. For h=0, the classical dynamics in the mean-field limit is given by the Vlasov equation.
A new purely algebraic algorithm is presented for computation of invariants (generalized Casimir operators) of Lie algebras. It uses the Cartans method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. The al gorithm is applied, in particular, to computation of invariants of real low-dimensional Lie algebras. A number of examples are calculated to illustrate its effectiveness and to make a comparison with the same cases in the literature. Bases of invariants of the real solvable Lie algebras up to dimension five, the real six-dimensional nilpotent Lie algebras and the real six-dimensional solvable Lie algebras with four-dimensional nilradicals are newly calculated and listed in tables.
The fundamental solution of the Schrodinger equation for a free particle is a distribution. This distribution can be approximated by a sequence of smooth functions. It is defined for each one of these functions, a complex measure on the space of path s. For certain test functions, the limit of the integrals of a test function with respect to the complex measures, exists. We define the Feynman integral of one such function by this limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا