The full set of polynomial solutions of the nested Bethe Ansatz is constructed for the case of A_2 rational spin chain. The structure and properties of these associated solutions are more various then in the case of usual XXX (A_1) spin chain but their role is similar.
We find a new vacuum of the Bethe ansatz solutions in the massless Thirring model. This vacuum breaks the chiral symmetry and has the lower energy than the well-known symmetric vacuum energy. Further, we evaluate the energy spectrum of the one partic
le-one hole ($1p-1h$) states, and find that it has a finite gap. The analytical expressions for the true vacuum as well as for the lowest $1p-1h$ excited state are also found. Further, we examine the bosonization of the massless Thirring model and prove that the well-known procedure of bosonization of the massless Thirring model is incomplete because of the lack of the zero mode in the boson field.
The $so(5)$ (i.e., $B_2$) quantum integrable spin chains with both periodic and non-diagonal boundaries are studied via the off-diagonal Bethe Ansatz method. By using the fusion technique, sufficient operator product identities (comparing to those in
[1]) to determine the spectrum of the transfer matrices are derived. For the periodic case, we recover the results obtained in cite{NYReshetikhin1}, while for the non-diagonal boundary case, a new inhomogeneous $T-Q$ relation is constructed. The present method can be directly generalized to deal with the $so(2n+1)$ (i.e., $B_n$) quantum integrable spin chains with general boundaries.
We consider the integrable open-chain transfer matrix corresponding to a Y=0 brane at one boundary, and a Y_theta=0 brane (rotated with the respect to the former by an angle theta) at the other boundary. We determine the exact eigenvalues of this tra
nsfer matrix in terms of solutions of a corresponding set of Bethe equations.
In [1, 2], Nekrasov applied the Bethe/gauge correspondence to derive the $mathfrak{su}, (2)$ XXX spin-chain coordinate Bethe wavefunction from the IR limit of a 2D $mathcal{N}=(2, 2)$ supersymmetric $A_1$ quiver gauge theory with an orbifold-type cod
imension-2 defect. Later, Bullimore, Kim and Lukowski implemented Nekrasovs construction at the level of the UV $A_1$ quiver gauge theory, recovered his result, and obtained further extensions of the Bethe/gauge correspondence [3]. In this work, we extend the construction of the defect to $A_M$ quiver gauge theories to obtain the $mathfrak{su} , ( M + 1 )$ XXX spin-chain nested coordinate Bethe wavefunctions. The extension to XXZ spin-chain is straightforward. Further, we apply a Higgsing procedure to obtain more general $A_M$ quivers and the corresponding wavefunctions, and interpret this procedure (and the Hanany-Witten moves that it involves) on the spin-chain side in terms of Izergin-Korepin-type specializations (and re-assignments) of the parameters of the coordinate Bethe wavefunctions.
We implement the Bethe anstaz method for the elliptic quantum group $E_{tau,eta}(A_2^{(2)})$. The Bethe creation operators are constructed as polynomials of the Lax matrix elements expressed through a recurrence relation. We also give the eigenvalues
of the family of commuting transfer matrices defined in the tensor product of fundamental representations.
G.P. Pronko (Institute for High Energy Physics
,Protvino
,Russia andn International Solvay Institute
.
(1999)
.
"The Complex of Solutions of the Nested Bethe Ansatz. The A_2 Spin Chain"
.
Yuri. Stroganov
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا