ترغب بنشر مسار تعليمي؟ اضغط هنا

Out Of This World Supersymmetry Breaking

87   0   0.0 ( 0 )
 نشر من قبل Lisa Randall
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that in a general hidden sector model, supersymmetry breaking necessarily generates at one-loop a scalar and gaugino mass as a consequence of the super-Weyl anomaly. We study a scenario in which this contribution dominates. We consider the Standard Model particles to be localized on a (3+1)-dimensional subspace or ``3-brane of a higher dimensional spacetime, while supersymmetry breaking occurs off the 3-brane, either in the bulk or on another 3-brane. At least one extra dimension is assumed to be compactified roughly one to two orders of magnitude below the four-dimensional Planck scale. This framework is phenomenologically very attractive; it introduces new possibilities for solving the supersymmetric flavor problem, the gaugino mass problem, the supersymmetric CP problem, and the mu-problem. Furthermore, the compactification scale can be consistent with a unification of gauge and gravitational couplings. We demonstrate these claims in a four-dimensional effective theory below the compactification scale that incorporates the relevant features of the underlying higher dimensional theory and the contribution of the super-Weyl anomaly. Naturalness constraints follow not only from symmetries but also from the higher dimensional origins of the theory. We also introduce additional bulk contributions to the MSSM soft masses. This scenario is very predictive: the gaugino masses, squark masses, and $A$ terms are given in terms of MSSM renormalization group functions.



قيم البحث

اقرأ أيضاً

In this paper we study dynamical supersymmetry breaking in absence of gravity with the matter content of the minimal supersymmetric standard model. The hidden sector of the theory is a strongly coupled gauge theory, realized in terms of microscopic v ariables which condensate to form mesons. The supersymmetry breaking scalar potential combines F, D terms with instanton generated interactions in the Higgs-mesons sector. We show that for a large region in parameter space the vacuum breaks in addition to supersymmetry also electroweak gauge symmetry. We furthermore present local D-brane configurations that realize these supersymmetry breaking patterns.
196 - S. P. de Alwis , Z. Lalak 2010
We discuss the possibility of finding scenarios, within type IIB string theory compactified on Calabi-Yau orientifolds with fluxes, for realizing gauge mediated supersymmetry breaking. We find that while in principle such scenarios are not ruled out, in practice it is hard to get acceptable constructions, since typically, supersymmetry breaking cannot be separated from the stabilization of the light modulus.
Motivated by supersymmetry breaking in matrix model formulations of superstrings, we present some concrete models, in which the supersymmetry is preserved for any finite $N$, but gets broken at infinite $N$, where $N$ is the rank of matrix variables. The models are defined as supersymmetric field theories coupled to some matrix models, and in the induced action obtained after integrating out the matrices, supersymmetry is spontaneously broken only when $N$ is infinity. In our models, the large value of $N$ gives a natural explanation for the origin of small parameters appearing in the field theories which trigger the supersymmetry breaking. In particular, in the case of the ORaifeartaigh model coupled to a certain supersymmetric matrix model, a nonsupersymmetric metastable vacuum appears near the origin of the field space, which is far from the position of the supersymmetric vacuum. We estimate its lifetime as a function of $N$.
We extend the KKLT approach to moduli stabilization by including the dilaton and the complex structure moduli into the effective supergravity theory. Decoupling of the dilaton is neither always possible nor necessary for the existence of stable minim a with zero (or positive) cosmological constant. The pattern of supersymmetry breaking can be much richer than in the decoupling scenario of KKLT.
We calculate the low energy effective action of massless and massive complex linear superfields coupled to a massive U(1) vector multiplet. Our calculations include superspace higher derivative corrections and therefore go beyond previous results. Am ong the superspace higher derivatives we find that terms which lead to a deformation of the auxiliary field potential and may break supersymmetry are also generated. We show that the supersymmetry breaking vacua can only be trusted if there exists a hierarchy between the higher order terms. A renormalization group analysis shows that generically a hierarchy is not generated by the quantum corrections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا