We extend the KKLT approach to moduli stabilization by including the dilaton and the complex structure moduli into the effective supergravity theory. Decoupling of the dilaton is neither always possible nor necessary for the existence of stable minima with zero (or positive) cosmological constant. The pattern of supersymmetry breaking can be much richer than in the decoupling scenario of KKLT.
We show that in a general hidden sector model, supersymmetry breaking necessarily generates at one-loop a scalar and gaugino mass as a consequence of the super-Weyl anomaly. We study a scenario in which this contribution dominates. We consider the St
andard Model particles to be localized on a (3+1)-dimensional subspace or ``3-brane of a higher dimensional spacetime, while supersymmetry breaking occurs off the 3-brane, either in the bulk or on another 3-brane. At least one extra dimension is assumed to be compactified roughly one to two orders of magnitude below the four-dimensional Planck scale. This framework is phenomenologically very attractive; it introduces new possibilities for solving the supersymmetric flavor problem, the gaugino mass problem, the supersymmetric CP problem, and the mu-problem. Furthermore, the compactification scale can be consistent with a unification of gauge and gravitational couplings. We demonstrate these claims in a four-dimensional effective theory below the compactification scale that incorporates the relevant features of the underlying higher dimensional theory and the contribution of the super-Weyl anomaly. Naturalness constraints follow not only from symmetries but also from the higher dimensional origins of the theory. We also introduce additional bulk contributions to the MSSM soft masses. This scenario is very predictive: the gaugino masses, squark masses, and $A$ terms are given in terms of MSSM renormalization group functions.
We consider 4d string compactifications in the presence of fluxes, and classify particles, strings and domain walls arising from wrapped branes which have charges conserved modulo an integer p, and whose annihilation is catalized by fluxes, through the Freed-Witten anomaly or its du
In the model of gauge mediation of SUSY breaking in the presence of tree-level mediation, the Froggatt-Nielsen mechanism provides a different hierarchy of sparticle masses. We study the spectra and show the results to be like those in an effective supersymmetric model.
We discuss the possibility of finding scenarios, within type IIB string theory compactified on Calabi-Yau orientifolds with fluxes, for realizing gauge mediated supersymmetry breaking. We find that while in principle such scenarios are not ruled out,
in practice it is hard to get acceptable constructions, since typically, supersymmetry breaking cannot be separated from the stabilization of the light modulus.
Counterexample models to the Nelson-Seiberg theorem have been discovered, and their features have been studied in previous literature. All currently known counterexamples have generic superpotentials respecting the R-symmetry, and more R-charge 2 fie
lds than R-charge 0 fields. But they give supersymmetric vacua with spontaneous R-symmetry breaking, thus violate both the Nelson-Seiberg theorem and its revisions. This work proves that the other type of counterexamples do not exist. When there is no R-symmetry, or there are no more R-charge 2 fields than R-charge 0 fields in models with R-symmetries, generic superpotentials always give supersymmetric vacua. There exists no specific arrangement of R-charges or non-R symmetry representations which makes a counterexample with a supersymmetry breaking vacuum. This nonexistence theorem contributes to a refined classification of R-symmetric Wess-Zumino models.