ﻻ يوجد ملخص باللغة العربية
In this paper we construct a $(2,2)$ dimensional string theory with manifest $N=1$ spacetime supersymmetry. We use Berkovits approach of augmenting the spacetime supercoordinates by the conjugate momenta for the fermionic variables. The worldsheet symmetry algebra is a twisted and truncated ``small $N=4$ superconformal algebra. The physical spectrum of the open string contains an infinite number of massless states, including a supermultiplet of a self-dual Yang-Mills field and a right-handed spinor and a supermultiplet of an anti-self-dual Yang-Mills field and a left-handed spinor. The higher-spin multiplets are natural generalisations of these self-dual and anti-self-dual multiplets.
This is an edited version of an unpublished 1979 EFI (U. Chicago) preprint: The U(N) lattice gauge theory in 2-dimensions can be considered as the statistical mechanics of a Coulomb gas on a circle in a constant electric field. The large N limit of t
Within the context of a bosonized theory, we evaluate the current-current correlation functions corresponding to a massive Dirac field in 2+1 dimensions, which is constrained to a spatial half-plane. We apply the result to the evaluation of induced v
We review our recent work on the glueball spectrum of pure Yang-Mills theory in 2+1 dimensions. The calculations make use of Karabali-Nair corner variables in the Hamiltonian formalism, and involve a determination of the leading form of the ground-state wavefunctional.
There exist local infinitesimal redefinitions of the fermionic fields, which may be used to modify the strength of the coupling for the interaction term in massless QED3. Under those (formally unitary) transformations, the functional integration meas
A tensorial representation of $phi^4$ field theory introduced in Phys. Rev. D. 93, 085005 (2016) is studied close to six dimensions, with an eye towards a possible realization of an interacting conformal field theory in five dimensions. We employ the