ترغب بنشر مسار تعليمي؟ اضغط هنا

Inequalities for Wilson loops, cusp singularities, area law and shape of a drum

237   0   0.0 ( 0 )
 نشر من قبل Pavel Pobylitsa
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف P.V. Pobylitsa




اسأل ChatGPT حول البحث

Inequalities are derived for Wilson loops generalizing the well-known Bachas inequality for rectangular contours. The inequalities are compatible with the area law for large contours. The Polyakov cusp anomalous dimension of Wilson lines (playing an important role in QCD applications to hard processes) has a convex angular dependence. This convexity is crucial for the consistency of the inequalities with renormalization. Some parallel properties can be found in the string theory. The Kac-Ray cusp term from the shape of a drum problem has the same angular convexity property and plays the role of the cusp anomalous dimension in the effective string model for Wilson loops studied by Luescher, Symanzik and Weisz (LSW). Using heuristic arguments based on the LSW model, one can find an interesting connection between the inequalities for Wilson loops and inequalities for determinants of two-dimensional Laplacians with Dirichlet boundary conditions on the closed contours associated with Wilson loops.



قيم البحث

اقرأ أيضاً

We investigate strongly correlated non-Abelian plasmas out of equilibrium. Based on numerical simulations, we establish a self-similar scaling property for the time evolution of spatial Wilson loops that characterizes a universal state of matter far from equilibrium. Most remarkably, it exhibits a generalized area law which holds for sufficiently large ratio of spatial area and fractional power of time. Performing calculations also for the perturbative regime at higher momenta, we are able to characterize the full nonthermal scaling properties of SU(2) and SU(3) symmetric plasmas from short to large distance scales in terms of two independent universal exponents and associated scaling functions.
96 - P.V. Pobylitsa 2019
The asymptotic behavior of Wilson loops in the large-size limit ($Lrightarrowinfty$) in confining gauge theories with area law is controlled by effective string theory (EST). The $L^{-2}$ term of the large-size expansion for the logarithm of Wilson l oop appears within EST as a two-loop correction. Ultraviolet divergences of this two-loop correction for polygonal contours can be renormalized using an analytical regularization constructed in terms of Schwarz-Christoffel mapping. In the case of triangular Wilson loops this method leads to a simple final expression for the $L^{-2}$ term.
We study Feynman integrals and scattering amplitudes in ${cal N}=4$ super-Yang-Mills by exploiting the duality with null polygonal Wilson loops. Certain Feynman integrals, including one-loop and two-loop chiral pentagons, are given by Feynman diagram s of a supersymmetric Wilson loop, where one can perform loop integrations and be left with simple integrals along edges. As the main application, we compute analytically for the first time, the symbol of the generic ($ngeq 12$) double pentagon, which gives two-loop MHV amplitudes and components of NMHV amplitudes to all multiplicities. We represent the double pentagon as a two-fold $mathrm{d} log$ integral of a one-loop hexagon, and the non-trivial part of the integration lies at rationalizing square roots contained in the latter. We obtain a remarkably compact algebraic words which contain $6$ algebraic letters for each of the $16$ square roots, and they all nicely cancel in combinations for MHV amplitudes and NMHV components which are free of square roots. In addition to $96$ algebraic letters, the alphabet consists of $152$ dual conformal invariant combinations of rational letters.
We study the correlator of concentric circular Wilson loops for arbitrary radii, spatial and internal space separations. For real values of the parameters specifying the dual string configuration, a typical Gross-Ooguri phase transition is observed. In addition, we explore some analytic continuation of a parameter $gamma$ that characterizes the internal space separation. This enables a ladder limit in which ladder resummation and string theory computations precisely agree in the strong coupling limit. Finally, we find a critical value of $gamma$ for which the correlator is supersymmetric and ladder diagrams can be exactly resummed for any value of the coupling constant.
By considering a Gaussian truncation of ${cal N}=4$ super Yang-Mills, we derive a set of Dyson equations that account for the ladder diagram contribution to connected correlators of circular Wilson loops. We consider different numbers of loops, with different relative orientations. We show that the Dyson equations admit a spectral representation in terms of eigenfunctions of a Schrodinger problem, whose classical limit describes the strong coupling limit of the ladder resummation. We also verify that in supersymmetric cases the exact solution to the Dyson equations reproduces known matrix model results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا