ﻻ يوجد ملخص باللغة العربية
We demonstrate how one can construct renormalizable perturbative expansion in formally nonrenormalizable higher dimensional scalar theories. It is based on 1/N-expansion and results in a logarithmically divergent perturbation theory in arbitrary high odd space-time dimension. The resulting effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. It exhibits either UV asymptotically free or IR free behaviour depending on the dimension of space-time.
The previously developed renormalizable perturbative 1/N-expansion in higher dimensional scalar field theories is extended to gauge theories with fermions. It is based on the $1/N_f$-expansion and results in a logarithmically divergent perturbation t
We demonstrate how one can construct renormalizable perturbative expansion in formally nonrenormalizable higher dimensional field theories. It is based on $1/N_f$-expansion and results in a logarithmically divergent perturbation theory in arbitrary h
Some nonrenormalizable theories are less singular than all renormalizable theories, and one can use lattice simulations to extract physical information from them. This paper discusses four nonrenormalizable theories that have finite euclidian and min
This paper has been withdrawn to address an omission. It will be resubmitted in the near future.
We classify a large set of melonic theories with arbitrary $q$-fold interactions, demonstrating that the interaction vertices exhibit a range of symmetries, always of the form $mathbb{Z}_2^n$ for some $n$, which may be $0$. The number of different th