ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher melonic theories

105   0   0.0 ( 0 )
 نشر من قبل Steven Gubser
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We classify a large set of melonic theories with arbitrary $q$-fold interactions, demonstrating that the interaction vertices exhibit a range of symmetries, always of the form $mathbb{Z}_2^n$ for some $n$, which may be $0$. The number of different theories proliferates quickly as $q$ increases above $8$ and is related to the problem of counting one-factorizations of complete graphs. The symmetries of the interaction vertex lead to an effective interaction strength that enters into the Schwinger-Dyson equation for the two-point function as well as the kernel used for constructing higher-point functions.

قيم البحث

اقرأ أيضاً

Melonic field theories are defined over the $p$-adic numbers with the help of a sign character. Our construction works over the reals as well as the $p$-adics, and it includes the fermionic and bosonic Klebanov-Tarnopolsky models as special cases; de pending on the sign character, the symmetry group of the field theory can be either orthogonal or symplectic. Analysis of the Schwinger-Dyson equation for the two-point function in the leading melonic limit shows that power law scaling behavior in the infrared arises for fermionic theories when the sign character is non-trivial, and for bosonic theories when the sign character is trivial. In certain cases, the Schwinger-Dyson equation can be solved exactly using a quartic polynomial equation, and the solution interpolates between the ultraviolet scaling controlled by the spectral parameter and the universal infrared scaling. As a by-product of our analysis, we see that melonic field theories defined over the real numbers can be modified by replacing the time derivative by a bilocal kinetic term with a continuously variable spectral parameter. The infrared scaling of the resulting two-point function is universal, independent of the spectral parameter of the ultraviolet theory.
71 - H. Lu , C.N. Pope , K. Thielemans 1994
In this paper, we examine the conditions under which a higher-spin string theory can be quantised. The quantisability is crucially dependent on the way in which the matter currents are realised at the classical level. In particular, we construct clas sical realisations for the $W_{2,s}$ algebra, which is generated by a primary spin-$s$ current in addition to the energy-momentum tensor, and discuss the quantisation for $sle8$. From these examples we see that quantum BRST operators can exist even when there is no quantum generalisation of the classical $W_{2,s}$ algebra. Moreover, we find that there can be several inequivalent ways of quantising a given classical theory, leading to different BRST operators with inequivalent cohomologies. We discuss their relation to certain minimal models. We also consider the hierarchical embeddings of string theories proposed recently by Berkovits and Vafa, and show how the already-known $W$ strings provide examples of this phenomenon. Attempts to find higher-spin fermionic generalisations lead us to examine the whether classical BRST operators for $W_{2,{nover 2}}$ ($n$ odd) algebras can exist. We find that even though such fermionic algebras close up to null fields, one cannot build nilpotent BRST operators, at least of the standard form.
96 - N. Tetradis 2012
We present exact classical solutions of the higher-derivative theory that describes the dynamics of the position modulus of a probe brane within a five-dimensional bulk. The solutions can be interpreted as static or time-dependent throats connecting two parallel branes. In the nonrelativistic limit the brane action is reduced to that of the Galileon theory. We derive exact solutions for the Galileon, which reproduce correctly the shape of the throats at large distances, but fail to do so for their central part. We also determine the parameter range for which the Vainshtein mechanism is reproduced within the brane theory.
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the ana lysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
We demonstrate how one can construct renormalizable perturbative expansion in formally nonrenormalizable higher dimensional scalar theories. It is based on 1/N-expansion and results in a logarithmically divergent perturbation theory in arbitrary high odd space-time dimension. The resulting effective coupling is dimensionless and is running in accordance with the usual RG equations. The corresponding beta function is calculated in the leading order and is nonpolynomial in effective coupling. It exhibits either UV asymptotically free or IR free behaviour depending on the dimension of space-time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا