ﻻ يوجد ملخص باللغة العربية
Properties of the rotating Kerr-Newman black hole solution allow to relate it with spinning particles. Singularity of black hole (BH) can be regularized by a metric deformation. In this case, as a consequence of the Einstein equations, a material source appears in the form of a relativistically rotating superconducting disk which replaces the former singular region. We show a relation of the BH regularization with confinement formation. By regularization, a phase transition occurs near the core of a charged black hole solution: from external electrovacuum to an internal superconducting state of matter. We discuss two models of such a kind, which demonstrate the appearance of a baglike structure and a mechanism of confinement based on dual Diracs electrodynamics. First one is an approximate solution based on a supersymmetric charged domain wall, and second is an exact solution based on nonlinear electrodynamics.
We extend the standard Kerr-Schild solution generating method to higher order scalar tensor theories that are shift-invariant for the scalar field. Certain degeneracy conditions, crucial for the absence of Ostrogradski ghosts, are found to be require
We discuss aspects of magnetically charged black holes in the Standard Model. For a range of charges, we argue that the electroweak symmetry is restored in the near horizon region. The extent of this phase can be macroscopic. If $Q$ is the integer ma
The evolution of black holes in confining boxes is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be
We consider a generic first-order phase transition at finite temperature and investigate to what extent a population of primordial black holes, of variable masses, can affect the rate of bubble nucleation. Using a thin-wall approximation, we construc
We study the conditions for the existence of black holes that can be produced in colliders at TeV-scale if the space-time is higher dimensional. On employing the microcanonical picture, we find that their life-times strongly depend on the details of