ترغب بنشر مسار تعليمي؟ اضغط هنا

Black holes seeding cosmological phase transitions

78   0   0.0 ( 0 )
 نشر من قبل Jonathan Manuel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a generic first-order phase transition at finite temperature and investigate to what extent a population of primordial black holes, of variable masses, can affect the rate of bubble nucleation. Using a thin-wall approximation, we construct the Euclidean configurations that describe transition at finite temperature. After the transition, the remnant black hole mass is dictated dynamically by the equations of motion. The transition exponent is computed and displays an explicit dependence on temperature. We find the configuration with the lowest Euclidean action to be static and $O(3)$ symmetric; therefore, the transition takes place via thermal excitation. The transition exponent exhibits a strong dependence on the seed mass black hole, $M_+$, being almost directly proportional. A new nucleation condition in the presence of black holes is derived and the nucleation temperature is compared to the familiar flat-space result, i.e. $S_3/T$. For an electroweak-like phase transition it is possible to enhance the nucleation rate if $M_+ lesssim 10^{15} M_{rm P}$. Finally, we outline the possible transition scenarios and the consequences for the power spectrum of stochastic gravitational waves produced due to the first-order phase transition.

قيم البحث

اقرأ أيضاً

The thermodynamics and phase transitions of charged RN-AdS and rotating Kerr-AdS black holes in a generalized Randall-Sundrum braneworld are investigated in the framework of thermodynamic geometry. A detailed analysis of the thermodynamics, stability and phase structures in the canonical and the grand canonical ensembles for these AdS braneworld black holes are described. The thermodynamic curvatures for both these AdS braneworld black holes are computed and studied as a function of the thermodynamic variables. Through this analysis we illustrate an interesting dependence of the phase structures on the braneworld parameter for these black holes.
We study N =4 super Yang-Mills theories on a three sphere with two kinds of chemical potentials. One is associated with the R-symmetry and the other with the rotational symmetry of S^3 (SO(4) symmetry). These correspond to the charged Kerr-AdS black holes via AdS/CFT. The exact partition functions at zero coupling are computed and the thermodynamical properties are studied. We find a nontrivial gap between the confinement/deconfinement transition line and the boundary of the phase diagram when we include more than four chemical potentials. In the dual gravity, we find such a gap in the phase diagram to study the thermodynamics of the charged Kerr-AdS black hole. This shows that the qualitative phase structures agree between the both sides. We also find that the ratio of the thermodynamical quantities is almost well-known factor 3/4 even at the low temperature.
We study the behavior of black hole singularities across the Hawking-Page phase transitions, uncovering the possible connection between the physics inside and outside the horizon. We focus on the case of spacelike singularities in Einstein-scalar the ory which are of the Kasner form. We find that the Kasner exponents are continuous and non-differentiable during the second order phase transitions, while discontinuous in the first order phase transitions. We give some arguments on the universality of this behavior. We also discuss possible observables in the dual field theory which encode the Kasner exponents.
We argue that a convenient way to analyze instabilities of black holes in AdS space is via Bragg-Williams construction of a free energy function. Starting with a pedagogical review of this construction in condensed matter systems and also its impleme ntation to Hawking-Page transition, we study instabilities associated with hairy black holes and also with the $R$-charged black holes. For the hairy black holes, an analysis of thermal quench is presented.
173 - Juan Maldacena 2020
We discuss aspects of magnetically charged black holes in the Standard Model. For a range of charges, we argue that the electroweak symmetry is restored in the near horizon region. The extent of this phase can be macroscopic. If $Q$ is the integer ma gnetic charge, the fermions lead to order $Q$ massless two dimensional fermions moving along the magnetic field lines. These greatly enhance Hawking radiation effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا