ﻻ يوجد ملخص باللغة العربية
In this paper we present a construction of a new class of explicit solutions to the WDVV (or associativity) equations. Our construction is based on a relationship between the WDVV equations and Whitham (or modulation) equations. Whitham equations appear in the perturbation theory of exact algebro-geometric solutions of soliton equations and are defined on the moduli space of algebraic curves with some extra algebro-geometric data. It was first observed by Krichever that for curves of genus zero the tau-function of a ``universal Whitham hierarchy gives a solution to the WDVV equations. This construction was later extended by Dubrovin and Krichever to algebraic curves of higher genus. Such extension depends on the choice of a normalization for the corresponding Whitham differentials. Traditionally only complex normalization (or the normalization w.r.t. a-cycles) was considered. In this paper we generalize the above construction to the real-normalized case.
We show that reductions of KP hierarchies related to the loop algebra of $SL_n$ with homogeneous gradation give solutions of the Darboux-Egoroff system of PDEs. Using explicit dressing matrices of the Riemann-Hilbert problem generalized to include a
We consider the associativity (or WDVV) equations in the form they appear in Seiberg-Witten theory and prove that they are covariant under generic electric-magnetic duality transformations. We discuss the consequences of this covariance from various perspectives.
N=4 superconformal multi-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial differential equations linear in U and generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation
We show that the Killing spinor equations of all supergravity theories which may include higher order corrections on a (r,s)-signature spacetime are associated with twisted covariant form hierarchies. These hierarchies are characterized by a connecti
Following a question of K. Hori at K. Fukayas 60th birthday conference, we relate the recently established WDVV-type relations for real Gromov-Witten invariants to topological recursion relations in a real setting. We also describe precisely the conn