ترغب بنشر مسار تعليمي؟ اضغط هنا

Pion Wave Function from QCD Sum Rules with Nonlocal Condensates

58   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1994
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a model QCD sum rule for the pion wave function $varphi_{pi}(x)$ based on the non-diagonal correlator whose perturbative spectral density vanishes and $Phi(x,M^2)$, the theoretical side of the sum rule, consists of condensate contributions only. We study the dependence of $Phi(x,M^2)$ on the Borel parameter $M^2$ and observe that $Phi(x,M^2)$ has a humpy form, with the humps becoming more and more pronounced when $M^2$ increases. We demonstrate that this phenomenon reflects just the oscillatory nature of the higher states wave functions, while the lowest state wave function $varphi_{pi}(x)$ extracted from our QCD sum rule analysis,has no humps, is rather narrow and its shape is close to the asymptotic form $varphi_{pi}^{as}(x) = 6x(1-x)$.



قيم البحث

اقرأ أيضاً

We calculate the form factors and the coupling constant in the $D^{*}D rho $ vertex in the framework of QCD sum rules. We evaluate the three point correlation functions of the vertex considering both $ D $ and $ rho $ mesons off--shell. The form fact ors obtained are very different but give the same coupling constant: $g_{D^{*}D rho} = 4.1 pm 0.1$ GeV$^{-1}$.
We calculate the form factors and the coupling constant in the $rho D^* D^*$ vertex in the framework of QCD sum rules. We evaluate the three point correlation functions of the vertex considering both $rho$ and $D^*$ mesons off--shell. The form factor s obtained are very different but give the same coupling constant: $g_{rho D^* D^*} = 6.6 pm 0.31$. This number is 50% larger than what we would expect from SU(4) estimates.
The light quark masses are determined using a new QCD Finite Energy Sum Rule (FESR) in the pseudoscalar channel. This FESR involves an integration kernel designed to reduce considerably the contribution of the (unmeasured) hadronic resonance spectral functions. The QCD sector of the FESR includes perturbative QCD (PQCD) to five loop order, and the leading non-perturbative terms. In the hadronic sector the dominant contribution is from the pseudoscalar meson pole. Using Contour Improved Perturbation Theory (CIPT) the results for the quark masses at a scale of 2 GeV are $m_u(Q= 2 {GeV}) = 2.9 pm 0.2 {MeV}$, $m_d(Q= 2 {GeV}) = 5.3 pm 0.4 {MeV}$, and $m_s(Q= 2 {GeV}) = 102 pm 8 {MeV}$, for $Lambda = 381 pm 16 {MeV}$, corresponding to $alpha_s(M_tau^2) = 0.344 pm0.009$. In this framework the systematic uncertainty in the quark masses from the unmeasured hadronic resonance spectral function amounts to less than 2 - 3 %. The remaining uncertainties above arise from those in $Lambda$, the unknown six-loop PQCD contribution, and the gluon condensate, which are all potentially subject to improvement.
We study $bar qq$-hybrid mixing for the light vector mesons and $bar qq$-glueball mixing for the light scalar mesons in Monte-Carlo based QCD Laplace sum rules. By calculating the two-point correlation function of a vector $bar qgamma_mu q$ (scalar $bar q q$) current and a hybrid (glueball) current we are able to estimate the mass and the decay constants of the corresponding mixed physical state that couples to both currents. Our results do not support strong quark/gluonic mixing for either the $1^{--}$ or the $0^{++}$ states.
The QCD up- and down-quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector current divergences. In the QCD sector this correlator is known to five loop order in perturbative QCD (PQCD ), together with non-perturbative corrections from the quark and gluon condensates. This FESR is designed to reduce considerably the systematic uncertainties arising from the hadronic spectral function. The determination is done in the framework of both fixed order and contour improved perturbation theory. Results from the latter, involving far less systematic uncertainties, are: $bar{m}_u (2, mbox{GeV}) = (2.6 , pm , 0.4) , {mbox{MeV}}$, $bar{m}_d (2, mbox{GeV}) = (5.3 , pm , 0.4) , {mbox{MeV}}$, and the sum $bar{m}_{ud} equiv (bar{m}_u , + , bar{m}_d)/2$, is $bar{m}_{ud}({ 2 ,mbox{GeV}}) =( 3.9 , pm , 0.3 ,) {mbox{MeV}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا