ﻻ يوجد ملخص باللغة العربية
An exhaustive number of QCD finite energy sum rules for $tau$-decay together with the latest updated ALEPH data is used to test the assumption of global duality. Typical checks are the absence of the dimension $d=2$ condensate, the equality of the gluon condensate extracted from vector or axial vector spectral functions, the Weinberg sum rules, the chiral condensates of dimensions $d=6$ and $d=8$, as well as the extraction of some low-energy parameters of chiral perturbation theory. Suitable pinched linear integration kernels are introduced in the sum rules in order to suppress potential quark-hadron duality violations and experimental errors. We find no compelling indications of duality violations in hadronic $tau$-decay in the kinematic region above $ssimeq2.2$ GeV$^{2}$ for these kernels.
Hadronic spectral functions measured by the ALEPH collaboration in the vector and axial-vector channels are used to study potential quark-hadron duality violations (DV). This is done entirely in the framework of pinched kernel finite energy sum rules
Evidence is presented for the necessity of including duality violations in a consistent description of spectral function moments employed in the precision determination of $alpha_s$ from $tau$ decay. A physically motivated ansatz for duality violatio
The vector and axial-vector ALEPH hadronic spectral functions from $tau$-decay are used to probe potential quark-hadron duality violations (DV). This is done in the framework of finite energy QCD sum rules (FESR). A pinched integration kernel is intr
The branching fractions of radiative leptonic $tau$ decays $(tau to l u bar{ u} gamma$, $l=e,mu)$ were recently measured by the Babar collaboration with a relative error of about 3%. The measurement of the branching ratio $mathcal{B} (tau to e bar{
The Quantum Chromodynamics (QCD) coupling, $alpha_s$, is not a physical observable of the theory since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by $hatalpha_s$, whose r