ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of the London limit for the first-order phase transition to a color superconductor

68   0   0.0 ( 0 )
 نشر من قبل Jorge Noronha
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jorge L. Noronha




اسأل ChatGPT حول البحث

We study the effects of gauge-field fluctuations on the free energy of a homogeneous color superconductor in the color-flavor-locked (CFL) phase. Gluonic fluctuations induce a strong first-order phase transition, in contrast to electronic superconductors where this transition is weakly first order. The critical temperature for this transition is larger than the one corresponding to the diquark pairing instability. The physical reason is that the gluonic Meissner masses suppress long-wavelength fluctuations as compared to the normal conducting phase where gluons are massless, which stabilizes the superconducting phase. In weak coupling, we analytically compute the temperatures associated with the limits of metastability of the normal and superconducting phases, as well as the latent heat associated with the first-order phase transition. We then extrapolate our results to intermediate densities and numerically evaluate the temperature of the fluctuation-induced first-order phase transition, as well as the discontinuity of the diquark condensate at the critical point. We find that the London limit of magnetic interactions is absent in color superconductivity.

قيم البحث

اقرأ أيضاً

We investigate the process of phase conversion in a thermally-driven {it weakly} first-order quark-hadron transition. This scenario is physically appealing even if the nature of this transition in equilibrium proves to be a smooth crossover for vanis hing baryonic chemical potential. We construct an effective potential by combining the equation of state obtained within Lattice QCD for the partonic sector with that of a gas of resonances in the hadronic phase, and present numerical results on bubble profiles, nucleation rates and time evolution, including the effects from reheating on the dynamics for different expansion scenarios. Our findings confirm the standard picture of a cosmological first-order transition, in which the process of phase conversion is entirely dominated by nucleation, also in the case of a weakly first-order transition. On the other hand, we show that, even for expansion rates much lower than those expected in high-energy heavy ion collisions, nucleation is very unlikely, indicating that the main mechanism of phase conversion is spinodal decomposition. Our results are compared to those obtained for a strongly first-order transition, as the one provided by the MIT bag model.
We consider the phenomenon of the Andreev reflection of hadrons at the interface between hadronic and color superconducting phases, which are expected to appear in the neutron star interior. Here, hadrons are defined as a superposition of constituent quarks, each of which is Andreev-reflected. We study what kind of reflections are possible to come out of incident mesons and baryons in the hadronic phase, attached to different color superconducting phases. Then, some peculiar patterns of the reflections are obtained.
Based on the analogy between the Nambu--Jona-Lasinio model of chiral symmetry breaking and the BCS theory of superconductivity, we investigate the effect of $bar q q$ pair fluctuations on the chiral phase transition. We include uncondensed $bar q q$ pairs at finite temperature and chemical potential in a self-consistent T-matrix formalism, the so-called $G_0 G$ scheme. The pair fluctuations reduce significantly the critical temperature and make quarks massive above the critical temperature.
Half a century after its discovery, the Josephson junction has become the most important nonlinear quantum electronic component at our disposal. It has helped reshape the SI system around quantum effects and is used in scores of quantum devices. By i tself, the use of Josephson junctions in the volt metrology seems to imply an exquisite understanding of the component in every aspect. Yet, surprisingly, there have been long-standing subtle issues regarding the modeling of the interaction of a junction with its electromagnetic environment. Here, we find that a Josephson junction connected to a resistor does not become insulating beyond a given value of the resistance due to a dissipative quantum phase transition, as is commonly believed. Our work clarifies how this key quantum component behaves in the presence of a dissipative environment and provides a comprehensive and consistent picture, notably regarding the treatment of its phase.
364 - Kei Iida UIUC 2000
We apply Ginzburg-Landau theory to determine BCS pairing in a strongly-coupled uniform superfluid of three-flavor massless quarks in flavor equilibrium. We elucidate the phase diagram near the critical temperature in the space of the parameters chara cterizing the thermodynamic potential terms of fourth order in the pairing gap. Within the color and flavor antisymmetric channel with zero total angular momentum, the phase diagram contains an isoscalar (IS) color-antitriplet phase and a color-flavor-locked (CFL) phase, reached by a second order transition from the normal state, as well as states reached by a first order transition. We complement the general Ginzburg-Landau approach by deriving the high-density asymptotic form of the Ginzburg-Landau free energy from the weak-coupling gap equation. The dynamically-screened, long-range color magnetic interactions are taken into account in solving the gap equation. We find that in the limit of weak coupling, the IS phase is less favorable near the transition temperature than the CFL phase. In view of the fact that deconfined quark matter must be color charge neutral, we incorporate the constraint of overall color neutrality into the Ginzburg-Landau theory and the gap equation. This constraint yields a disparity in the chemical potential between colors and reduces the size of the gap, in the presence of the anisotropy of the order parameters in color space. In comparison with the case in which there are no chemical potential differences between colors and hence the superfluid generally has nonzero net color charge, we find that while the constraint of color neutrality has only negligible effects on the gap in the weak coupling regime, it appreciably destabilizes the IS phase in the strong coupling regime without affecting the CFL phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا