ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase conversion in a weakly first-order quark-hadron transition

302   0   0.0 ( 0 )
 نشر من قبل Bruno Mintz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the process of phase conversion in a thermally-driven {it weakly} first-order quark-hadron transition. This scenario is physically appealing even if the nature of this transition in equilibrium proves to be a smooth crossover for vanishing baryonic chemical potential. We construct an effective potential by combining the equation of state obtained within Lattice QCD for the partonic sector with that of a gas of resonances in the hadronic phase, and present numerical results on bubble profiles, nucleation rates and time evolution, including the effects from reheating on the dynamics for different expansion scenarios. Our findings confirm the standard picture of a cosmological first-order transition, in which the process of phase conversion is entirely dominated by nucleation, also in the case of a weakly first-order transition. On the other hand, we show that, even for expansion rates much lower than those expected in high-energy heavy ion collisions, nucleation is very unlikely, indicating that the main mechanism of phase conversion is spinodal decomposition. Our results are compared to those obtained for a strongly first-order transition, as the one provided by the MIT bag model.

قيم البحث

اقرأ أيضاً

117 - Kanako Yamazaki , T. Matsui 2013
We study the quark-hadron phase transition by using a three flavor Nambu-Jona-Lasinio model with the Polyakov loop at zero chemical potential, extending our previous work with two flavor model. We show that the equation of state at low temperatures i s dominated by pions and kaons as collective modes of quarks and anti-quarks. As temperature increases, mesonic collective modes melt into the continuum of quark and anti-quark so that hadronic phase changes continuously to the quark phase where quark excitations dominate pressure.
Hadronic matter undergoes a deconfinement transition to quark matter at high temperature and/or high density. It would be realized in collapsing cores of massive stars. In the framework of MIT bag model, the ambiguities of the interaction are encapsu lated in the bag constant. Some progenitor stars that invoke the core collapses explode as supernovae, and other ones become black holes. The fates of core collapses are investigated for various cases. Equations of state including the hadron-quark phase transition are constructed for the cases of the bag constant B=90, 150 and 250 MeV fm^{-3}. To describe the mixed phase, the Gibbs condition is used. Adopting the equations of state with different bag constants, the core collapse simulations are performed for the progenitor models with 15 and 40Msolar. If the bag constant is small as B=90 MeV fm^{-3}, an interval between the bounce and black hole formation is shortened drastically for the model with 40Msolar and the second bounce revives the shock wave leading to explosion for the model with 15Msolar.
A model of statistical quark-gluon plasma formation is considered.We look the dilepton production at critical temperature $T_{c}sim170 Mev $ and completely free out temperature $T=150 MeV$ with the initial temperature as $T_{0}=570,400 (250) MeV$. No w we consider that quark mass is depending on the coupling value through parameterisation factor of the fireball formation and temperature. The rate of production is shown for invariant mass $M$ at the particular value of $ E=2.0,3.0 GeV$.It shows the significant production of leptons in this process for small value of invariant mass. However, the quark-hadron phase transition is a very weakly changed in the entropy of the system during this process of hadronisation.
We present numerical results on bubble profiles, nucleation rates and time evolution for a weakly first-order quark-hadron phase transition in different expansion scenarios. We confirm the standard picture of a cosmological first-order phase transiti on, in which the phase transition is entirely dominated by nucleation. We also show that, even for expansion rates much lower than those expected in heavy-ion collisions nucleation is very unlikely, indicating that the main phase conversion mechanism is spinodal decomposition.
We study the effects of gauge-field fluctuations on the free energy of a homogeneous color superconductor in the color-flavor-locked (CFL) phase. Gluonic fluctuations induce a strong first-order phase transition, in contrast to electronic superconduc tors where this transition is weakly first order. The critical temperature for this transition is larger than the one corresponding to the diquark pairing instability. The physical reason is that the gluonic Meissner masses suppress long-wavelength fluctuations as compared to the normal conducting phase where gluons are massless, which stabilizes the superconducting phase. In weak coupling, we analytically compute the temperatures associated with the limits of metastability of the normal and superconducting phases, as well as the latent heat associated with the first-order phase transition. We then extrapolate our results to intermediate densities and numerically evaluate the temperature of the fluctuation-induced first-order phase transition, as well as the discontinuity of the diquark condensate at the critical point. We find that the London limit of magnetic interactions is absent in color superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا