ﻻ يوجد ملخص باللغة العربية
The calculation of muon spectra from the decay of Lambda_c baryons was carried out on the basis of the description of recent data on charmed-baryon production in hadronic interactions. Data are described in the framework of Quark--Gluon String Model that allowes us to consider primary proton interactions of arbitrary high energy. MC code was built for charmed-baryon semileptonic decay in order to obtain the kinematical characteristics of resulting particles. It is predicted that the charge asymmetry between energy spectra of mu+ and mu- in laboratory system is clearly seen as the consequence of asymmetry between the spectra of charmed baryons and antibaryons.This extension of QGS Model can be useful to correct the calculations of muon and neutrino spectra in astrophysics.
Up to now, the excited charmed and bottom baryon states are still not well studied both experimentally and theoretically. In the present paper, we predict the mass of $Omega_b^*$, the only $L = 0$ baryon state which has not been observed, to be 6069.
The very rare Bd0 --> mu+ mu- decay may be the last chance for New Physics in flavor sector at the LHC, before the 13 TeV run in 2015. Partially motivated by the known tension in sin(2beta/phi_1), enhancement beyond (3-4) x 10^-10 would likely imply
The process e^+e^- ->mu^+mu^- has been studied with SND detector at VEPP-2M e^+e^- collider in the vicinity of phi(1020) resonance. The product of branching ratios of phi meson into leptons sqrt{B(phi->mu^+mu^-) B(phi-> e^+e^-)}=(3.14+-0.22+-0.14)x10
We have observed the rare decay K+ --> pi+ mu+ mu- and measured the branching ratio Gamma(K+ --> pi+ mu+ mu-)/Gamma(K+ --> all) = (5.0 +/- 0.4 (stat.) +/- 0.7 (sys.) +/- 0.6 (theor.)) x 10^{-8}. We compare this result with predictions from chiral per
We study constraints and implications of the recent LHCb measurement of ${cal B}(B_s to mu^+mu^-)$ for tree-level Higgs-mediated flavor-changing neutral current (FCNC) interactions. Combined with experimental data on $B_s$ mass difference $Delta m_s$