ﻻ يوجد ملخص باللغة العربية
We analyse the width of the $theta(frac12^+)$ pentaquark assuming that it is a bound state of two extended spin-zero $ud$-diquarks and the $bar s$ antiquark (the Jaffe-Wilczek scenario). The width obtained when the size parameters of the pentaquark wave function are taken to be close to the parameters of the nucleon is found to be $simeq 150$ MeV, i.e. it has a normal value for a $P$-wave hadron decay with the corresponding energy release.However, we found a strong dynamical suppression of the decay width if the pentaquark has an asymmetric peanut structure with the strange antiquark in the center and the two diquarks rotating around. In this case a decay width of $simeq$ 1 MeV is a natural possibility.
If Jaffe and Wilczeks diquark picture for $Theta_5$ pentaquark is correct, there should also exist a $SU_F$(3) pentaquark octet and singlet with no orbital excitation between the diquark pair, hence $J^P={1/2}^-$. These states are lighter than the $T
$QQ^prime qqbar q$ pentaquarks are studied in a potential model, under the hypothesis that they are composite objects of two diquarks and one antiquark. The interaction between two colored objects includes two contributions, one based on the $qbar q$
A Bethe-Salpeter-Faddeev (BSF) calculation is performed for the pentaquark $Theta^+$ in the diquark picture of Jaffe and Wilczek in which $Theta^+$ is a diquark-diquark-${bar s}$ three-body system. Nambu-Jona-Lasinio (NJL) model is used to calculate
Within the Quark-Gluon String Model A.B. Kaidalov found a behaviour of quark and diquark fragmentation functions for $zrightarrow 0$ and $zrightarrow 1$, and proposed interpolation formulae for the functions in the whole region of $z$. These function
We study the photoproduction of the $Lambda(1405)$ and $Sigma(1400)$ hyperon resonances, the latter of which is not a well established state. We evaluate the $s$-, $t$- and $u$-channel diagrams in the Born approximation by employing the effective Lag