ﻻ يوجد ملخص باللغة العربية
We discuss a realisation of the pentaquark structure proposed by Jaffe and Wilczek within a simple quark model with colour-spin contact interactions and coloured harmonic confinement, which accurately describes the $Delta-N$ splitting. In this model spatially compact diquarks are formed in the pentaquark but no such compact object exists in the nucleon. The colour-spin attraction brings the Jaffe-Wilczek-like state down to a low mass, compatible with the experimental observation and below that of the naive ground state with all $S$-waves. We find, however, that although these trends are maintained, the extreme effects observed do not survive the required ``smearing of the delta function contact interaction. We also demonstrate the weakness of the ``schematic approximation when applied to a system containing a $P$-wave. An estimate of the anti-charmed pentaquark mass is made which is in line with the Jaffe-Wilczek prediction and significantly less than the value reported by the H1 collaboration.
I examine the diquark model of pentaquarks that was suggested by Jaffe and Wilczek. Based upon this model, I predict the states Theta(1530), N(1710), Sigma(1880) and Xi(1770) to be members of the same anti-decuplet. Moreover I predict the states N(14
If Jaffe and Wilczeks diquark picture for $Theta_5$ pentaquark is correct, there should also exist a $SU_F$(3) pentaquark octet and singlet with no orbital excitation between the diquark pair, hence $J^P={1/2}^-$. These states are lighter than the $T
We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the $J^P={1over 2}^+$ or ${3over 2}^
By assuming a mass formula for the spectrum of the Y=2 pentaquarks, where the chromo-magnetic interaction plays a main role, and identifying the lightest state with the Theta^+(1540), we predict a spectrum in good agreement with the few I=0 and I=1 candidates proposed in the past.
Several experimental groups have reported evidence for baryons with flavor exotic quantum numbers that cannot be explained as $qqq$ bound states but require a minimum of five quarks -- $qqqq bar q$. These pentaquark states include the $theta^{+}$, th