ﻻ يوجد ملخص باللغة العربية
By assuming a mass formula for the spectrum of the Y=2 pentaquarks, where the chromo-magnetic interaction plays a main role, and identifying the lightest state with the Theta^+(1540), we predict a spectrum in good agreement with the few I=0 and I=1 candidates proposed in the past.
If the $J^P$ of $Theta_5^+$ and $Xi_5^{--}$ pentaquarks is really found to be ${1over 2}^+$ by future experiments, they will be accompanied by $J^P={3over 2}^+$ partners in some models. It is reasonable to expect that these $J^P={3over 2}^+$ states w
We present the spectrum of the lightest pentaquark states of both parities and compare it with the present experimental evidence for these states. We have assumed that the main role for their mass splittings is played by the chromo-magnetic interacti
We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the $J^P={1over 2}^+$ or ${3over 2}^
If Jaffe and Wilczeks diquark picture for $Theta_5$ pentaquark is correct, there should also exist a $SU_F$(3) pentaquark octet and singlet with no orbital excitation between the diquark pair, hence $J^P={1/2}^-$. These states are lighter than the $T
Very recently, the LHCb Collaboration reported a fully charmed tetraquark state $X(6900)$ in the invariant mass spectrum of $J/psi$ pairs. If one $J/psi$ meson is replaced with a fully charmed baryon, we obtain a fully charmed pentaquark candidate. I