ﻻ يوجد ملخص باللغة العربية
We highlight the important role that canonical normalisation of kinetic terms in flavour models based on family symmetries can play in determining the Yukawa matrices. Even though the kinetic terms may be correctly canonically normalised to begin with, they will inevitably be driven into a non-canonical form by a similar operator expansion to that which determines the Yukawa operators. Therefore in models based on family symmetry canonical re-normalisation is mandatory before the physical Yukawa matrices can be extracted. In nearly all examples in the literature this is not done. As an example we perform an explicit calculation of such mixing associated with canonical normalisation of the Kahler metric in a supersymmetric model based on SU(3) family symmetry, where we show that such effects can significantly change the form of the Yukawa matrix. In principle quark mixing could originate entirely from canonical normalisation, with only diagonal Yukawa couplings before canonical normalisation.
We present empirical relations that connect the dimensionless ratios of fermion masses for the charged lepton, up-type quark and down-type quark sectors. Explaining these relations from first principles imposes strong constraints on the search for th
Sets of zero-dimensional ideals in the polynomial ring $k[x,y]$ that share the same leading term ideal with respect to a given term ordering are known to be affine spaces called Grobner cells. Conca-Valla and Constantinescu parametrize such Grobner c
We analyze the quantum transport equations for supersymmetric electroweak baryogenesis including previously neglected bottom and tau Yukawa interactions and show that they imply the presence of a previously unrecognized dependence of the cosmic baryo
We explore a scenario in the Standard Model in which dimension four Yukawa couplings are either forbidden by a symmetry, or happen to be very tiny, and the Yukawa interactions are dominated by effective dimension six interactions. In this case, the H
We consider models which are natural extensions of those where supersymmetry is broken at low energy scales and transmitted to visible matter by gauge interactions. We investigate the situation where the quark and lepton superfields of the MSSM are l