ترغب بنشر مسار تعليمي؟ اضغط هنا

Canonical Hilbert-Burch matrices for power series

154   0   0.0 ( 0 )
 نشر من قبل Roser Homs Pons
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Sets of zero-dimensional ideals in the polynomial ring $k[x,y]$ that share the same leading term ideal with respect to a given term ordering are known to be affine spaces called Grobner cells. Conca-Valla and Constantinescu parametrize such Grobner cells in terms of certain canonical Hilbert-Burch matrices for the lexicographical and degree-lexicographical term orderings, respectively. In this paper, we give a parametrization of $(x,y)$-primary ideals in Grobner cells which is compatible with the local structure of such ideals. More precisely, we extend previous results to the local setting by defining a notion of canonical Hilbert-Burch matrices of zero-dimensional ideals in the power series ring $k[[x,y]]$ with a given leading term ideal with respect to a local term ordering.

قيم البحث

اقرأ أيضاً

135 - Aldo Conca , Giuseppe Valla 2007
An Artinian ideal $I$ of $k[x,y]$ has many Hilbert-Burch matrices. We show that there is a canonical choice. As an application, we determine the dimension of certain affine Grobner cells and their Betti strata recovering results of Ellingsrud and Str{o}mme, Gottsche and Iarrobino.
We give three determinantal expressions for the Hilbert series as well as the Hilbert function of a Pfaffian ring, and a closed form product formula for its multiplicity. An appendix outlining some basic facts about degeneracy loci and applications t o multiplicity formulae for Pfaffian rings is also included.
We construct an explicit filtration of the ring of algebraic power series by finite dimensional constructible sets, measuring the complexity of these series. As an application, we give a bound on the dimension of the set of algebraic power series of bounded complexity lying on an algebraic variety defined over the field of power series.
89 - V. Trivedi 2015
For a pair $(M, I)$, where $M$ is finitely generated graded module over a standard graded ring $R$ of dimension $d$, and $I$ is a graded ideal with $ell(R/I) < infty$, we introduce a new invariant $HKd(M, I)$ called the {em Hilbert-Kunz density funct ion}. In Theorem 1.1, we relate this to the Hilbert-Kunz multiplicity $e_{HK}(M,I)$ by an integral formula. We prove that the Hilbert-Kunz density function is additive. Moreover it satisfies a multiplicative formula for a Segre product of rings. This gives a formula for $e_{HK}$ of the Segre product of rings in terms of the HKd of the rings involved. As a corollary, $e_{HK}$ of the Segre product of any finite number of Projective curves is a rational number. As an another application we see that $e_{HK}(R, {bf m}^k) - e(R, {bf m}^k)/d!$ grows at least as a fixed positive multiple of $k^{d-1}$ as $kto infty$.
We prove the existence of HK density function for a pair $(R, I)$, where $R$ is a ${mathbb N}$-graded domain of finite type over a perfect field and $Isubset R$ is a graded ideal of finite colength. This generalizes our earlier result where one prove s the existence of such a function for a pair $(R, I)$, where, in addition $R$ is standard graded. As one of the consequences we show that if $G$ is a finite group scheme acting linearly on a polynomial ring $R$ of dimension $d$ then the HK density function $f_{R^G, {bf m}_G}$, of the pair $(R^G, {bf m}_G)$, is a piecewise polynomial function of degree $d-1$. We also compute the HK density functions for $(R^G, {bf m}_G)$, where $Gsubset SL_2(k)$ is a finite group acting linearly on the ring $k[X, Y]$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا