ﻻ يوجد ملخص باللغة العربية
The leading-order process for the production of a Z boson and a heavy-quark jet at hadron colliders is gQ -> ZQ (Q=c,b). We calculate this cross section at next-to-leading order at the Tevatron and the LHC, and compare it with other sources of ZQ events. This process is a background to new physics, and can be used to measure the heavy-quark distribution function.
We present a next-to-leading-order calculation of the production of a Z boson with two jets, one or more of which contains a heavy quark (Q=c,b). We show that the cross section with only one heavy-quark jet is larger than that with two heavy-quark je
We calculate the production of a W boson and a single b jet to next-to-leading order in QCD at the Fermilab Tevatron and the CERN Large Hadron Collider. Both exclusive and inclusive cross sections are presented. We separately consider the cross secti
The production of vector boson tagged heavy quark jets provides potentially new tools to study jet quenching, especially the mass hierarchy of parton energy loss. In this work, we present the first theoretical study on $Z^0,+,$b-jet in heavy-ion coll
One way to probe new physics beyond standard model is to check the correlation among higher dimension operators in effective field theory. We examine the strong correlation between the processes of $pprightarrow tHq$ and $pprightarrow tq$ which both
The production cross sections of $J/psi~eta_b$, $Upsilon;eta_c$ pairs in a single boson $e^+e^-$ annihilation have been studied in a wide range of energies, which will be achieved at future $e^+e^-$ colliders. The main color singlet contributions to