ﻻ يوجد ملخص باللغة العربية
The production of vector boson tagged heavy quark jets provides potentially new tools to study jet quenching, especially the mass hierarchy of parton energy loss. In this work, we present the first theoretical study on $Z^0,+,$b-jet in heavy-ion collisions. Firstly utilizing a Monte Carlo transport model, our simulations give nice descriptions of the azimuthal angle correlation $Deltaphi_{jZ}$, transverse momentum imbalance $x_{jZ}$ for $Z^0,+,$jet as well as the nuclear modification factor $R_{AA}$ of inclusive b-jet in Pb+Pb collisions. Then we calculate the azimuthal angular correlation $Deltaphi_{bZ}$ of $Z^0,+,$b-jet and $Deltaphi_{bb}$ of $Z^0,+,2,$b-jets in central Pb+Pb collisions at $sqrt{s_{NN}}=$~5.02 TeV. We find that the medium modification of the azimuthal angular correlation for $Z^0,+,$b-jet has a weaker dependence on $Deltaphi_{bZ}$, as compared to that for $Z^0,+,$jet. With the high purity of quark jet in $Z^0,+,$(b-)jet production, we calculate the momentum imbalance distribution of $x_{bZ}$ of $Z^0,+,$b-jet in Pb+Pb collisions. We observe a smaller shifting of the mean value of momentum imbalance for $Z^0,+,$b-jet in Pb+Pb collisions $Deltaleftlangle x_{bZ} rightrangle$, as compared to that for $Z^0,+,$jet. In addition, we investigate the nuclear modification factors of tagged jet cross sections $I_{AA}$, and show a much stronger suppression of $I_{AA}$ in $Z^0,+,$jet than that of $Z^0,+,$b-jet in central Pb+Pb collisions.
We calculate the production of a W boson and a single b jet to next-to-leading order in QCD at the Fermilab Tevatron and the CERN Large Hadron Collider. Both exclusive and inclusive cross sections are presented. We separately consider the cross secti
Tagged jet measurements provide a promising experimental channel to quantify the similarities and differences in the mechanisms of jet production in proton-proton and nucleus-nucleus collisions. We present the first calculation of the transverse mome
In a suitably chosen back-to-back kinematics, four-jet production in hadronic collisions is known to be dominated by contributions from two independent partonic scattering processes, thus giving experimental access to the structure of generalized two
The leading-order process for the production of a Z boson and a heavy-quark jet at hadron colliders is gQ -> ZQ (Q=c,b). We calculate this cross section at next-to-leading order at the Tevatron and the LHC, and compare it with other sources of ZQ eve
The propagation of the heavy quarks produced in relativistic nucleus-nucleus collisions at RHIC and LHC is studied within the framework of Langevin dynamics in the background of an expanding deconfined medium described by ideal and viscous hydrodynam