ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Fields far from Equilibrium and Thermalization

263   0   0.0 ( 0 )
 نشر من قبل Juergen Berges
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English
 تأليف J. Berges




اسأل ChatGPT حول البحث

I review the use of the 2PI effective action in nonequilibrium quantum field theory. The approach enables one to find approximation schemes which circumvent long-standing problems of non-thermal or secular (unbounded) late-time evolutions encountered in standard loop or 1/N expansions of the 1PI effective action. It is shown that late-time thermalization can be described from a numerical solution of the three-loop 2PI effective action for a scalar $phi^4$--theory in 1+1 dimensions (with Jurgen Cox, hep-ph/0006160). Quantitative results far from equilibrium beyond the weak coupling expansion can be obtained from the 1/N expansion of the 2PI effective action at next-to-leading order (NLO), calculated for a scalar O(N) symmetric quantum field theory (hep-ph/0105311). Extending recent calculations in classical field theory by Aarts et al. (hep-ph/0007357) and by Blagoev et al. (hep-ph/0106195) to $N>1$ we show that the NLO approximation converges to exact (MC) results already for moderate values of $N$ (with Gert Aarts, hep-ph/0107129). I comment on characteristic time scales in scalar quantum field theory and the applicability of classical field theory for sufficiently high initial occupation numbers.

قيم البحث

اقرأ أيضاً

We present simulations of non-equilibrium dynamics of quantum field theories on digital quantum computers. As a representative example, we consider the Schwinger model, a 1+1 dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to a thermal environment described by a scalar field theory. We use the Hamiltonian formulation of the Schwinger model discretized on a spatial lattice. With the thermal scalar fields traced out, the Schwinger model can be treated as an open quantum system and its real-time dynamics are governed by a Lindblad equation in the Markovian limit. The interaction with the environment ultimately drives the system to thermal equilibrium. In the quantum Brownian motion limit, the Lindblad equation is related to a field theoretical Caldeira-Leggett equation. By using the Stinespring dilation theorem with ancillary qubits, we perform studies of both the non-equilibrium dynamics and the preparation of a thermal state in the Schwinger model using IBMs simulator and quantum devices. The real-time dynamics of field theories as open quantum systems and the thermal state preparation studied here are relevant for a variety of applications in nuclear and particle physics, quantum information and cosmology.
In heavy-ion collisions, the quark-gluon plasma is produced far from equilibrium. This regime is currently inaccessible by quantum chromodynamics (QCD) computations. We calculate shear transport and entropy far from equilibrium in a holographic model , defining a time-dependent ratio of shear viscosity to entropy density, $eta/s$. Large deviations of up to 60% from its near-equilibrium value, $1/4pi$, are found for realistic situations at the Large Hadron Collider. We predict the far-from-equilibrium time-dependence of $eta/s$ to substantially affect the evolution of the QCD plasma and to impact the extraction of QCD properties from flow coefficients in heavy-ion collision data.
Shear viscosity is a crucial property of QCD matter which determines the collective behavior of the the quark-gluon plasma (QGP) in ultrarelativistic heavy-ion collisions. Extending the near-equilibrium, high-precision investigations in theory and ex periment, we take into account the fact that, in a collision, the QGP is generated far from equilibrium. We use the AdS/CFT correspondence to study a strongly coupled plasma and find a significant impact on the ratio of shear viscosity to entropy density, $eta/s$. In particular, we investigate the initial heating phase and find a decrease reaching down to below 60% followed by an overshoot to 110% of the near-equilibrium value. This finding might be highly relevant for the extraction of transport coefficients from anisotropic flow measurements at RHIC and LHC.
In this work, I calculate the $p_perp$ resolved spectra for the three stages of the textit{bottom-up} scenario, which are comparable to the thermal contribution, particularly at higher values of the saturation scale $Q_S^2$. Analytical solutions are obtained by including a parametrization of scaling solutions from far-from-equilibrium classical statistical lattice simulations into a small angle kinetic rate. Furthermore, a theoretically motivated ansatz is used to account for near-collinear enhancement of the low-$p_perp$ radiation. The system is phenomenologically constrained using the charge hadron multiplicities from LHC and RHIC as in previous parametric estimates and fair agreement with the data available for photons was found. I find that for this realistic set of parameters, the contribution from the thermalizing glasma dominates the excess photons.
We calculate the time evolution of a far-from-equilibrium initial state of a non-relativistic ultracold Bose gas in one spatial dimension. The non-perturbative approximation scheme is based on a systematic expansion of the two-particle irreducible ef fective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory and off-shell effects that are not captured in mean-field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا