ﻻ يوجد ملخص باللغة العربية
We calculate the time evolution of a far-from-equilibrium initial state of a non-relativistic ultracold Bose gas in one spatial dimension. The non-perturbative approximation scheme is based on a systematic expansion of the two-particle irreducible effective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory and off-shell effects that are not captured in mean-field theory.
Ultracold alkali atoms provide experimentally accessible model systems for probing quantum states that manifest themselves at the macroscopic scale. Recent experimental realizations of superfluidity in dilute gases of ultracold fermionic (half-intege
We discuss a 1+1 dimensional Galilean invariant model recently introduced in connection with ultracold quantum gases. After showing its relation to a nonrelativistic 2+1 Chern-Simons matter system, we identify the generators of the supersymmetry and
We propose a new method of detecting the onset of superfluidity in a two-component ultracold fermionic gas of atoms governed by an attractive short-range interaction. By studying the two-body correlation functions we find that a measurement of the mo
We study the time evolution of two coupled many-body quantum systems one of which is assumed to be Bose condensed. Specifically, we consider two ultracold atomic clouds populating each two localized single-particle states, i.e. a two-component Bosoni
We investigate the mean-field phase diagram of the Bose-Hubbard model with infinite-range interactions in two dimensions. This model describes ultracold bosonic atoms confined by a two-dimensional optical lattice and dispersively coupled to a cavity