ﻻ يوجد ملخص باللغة العربية
We describe preliminary results from an effort to quantify the uncertainties in parton distribution functions and the resulting uncertainties in predicted physical quantities. The production cross section of the $W$ boson is given as a first example. Constraints due to the full data sets of the CTEQ global analysis are used in this study. Two complementary approaches, based on the Hessian and the Lagrange multiplier method respectively, are outlined. We discuss issues on obtaining meaningful uncertainty estimates that include the effect of correlated experimental systematic uncertainties and illustrate them with detailed calculations using one set of precision DIS data.
We investigate the uncertainties of the heavy-quark parton distribution functions in the variable flavor number scheme. Because the charm- and bottom-quark parton distribution functions (PDFs) are constructed predominantly from the gluon PDF, it is a
We present a detailed study of the helicity-dependent and helicity-independent collinear parton distribution functions (PDFs) of the nucleon, using the quasi-PDF approach. The lattice QCD computation is performed employing twisted mass fermions with
Initial state evolution in parton shower event generators involves parton distribution functions. We examine the probability for the system to evolve from a higher scale to a lower scale without an initial state splitting. A simple argument suggests
We present the first lattice results on isovector unpolarized and longitudinally polarized parton distribution functions (PDFs) at physical pion mass. The PDFs are obtained using the large-momentum effective field theory (LaMET) framework where the f
The organization of finite order QCD approximations to $F_2^{gamma}(x,Q^2)$ based on the separation of pure QED contribution from those of genuine QCD nature is discussed.