ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Nucleon Isovector Unpolarized Parton Distribution in the Physical-Continuum Limit

89   0   0.0 ( 0 )
 نشر من قبل Huey-Wen Lin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first lattice-QCD calculation of the nucleon isovector unpolarized parton distribution functions (PDFs) at the physical-continuum limit using Large-Momentum Effective Theory (LaMET). The lattice results are calculated using ensembles with multiple sea pion masses with the lightest one around 135~MeV, 3 lattice spacings $ain[0.06,0.12]$~fm, and multiple volumes with $M_pi L$ ranging 3.3 to 5.5. We perform a simultaneous chiral-continuum extrapolation to obtain RI/MOM renormalized nucleon matrix elements with various Wilson-link displacements in the continuum limit at physical pion mass. Then, we apply one-loop perturbative matching to the quasi-PDFs to obtain the lightcone PDFs. We find the lattice-spacing dependence to be much larger than the dependence on pion mass and lattice volume for these LaMET matrix elements. Our physical-continuum limit unpolarized isovector nucleon PDFs are found to be consistent with global-PDF results.



قيم البحث

اقرأ أيضاً

We present results on the quark unpolarized, helicity and transversity parton distributions functions of the nucleon. We use the quasi-parton distribution approach within the lattice QCD framework and perform the computation using an ensemble of twis ted mass fermions with the strange and charm quark masses tuned to approximately their physical values and light quark masses giving pion mass of 260 MeV. We use hierarchical probing to evaluate the disconnected quark loops. We discuss identification of ground state dominance, the Fourier transform procedure and convergence with the momentum boost. We find non-zero results for the disconnected isoscalar and strange quark distributions. The determination of the quark parton distribution and in particular the strange quark contributions that are poorly known provide valuable input to the structure of the nucleon.
Ioffe-time distributions, which are functions of the Ioffe-time $ u$, are the Fourier transforms of parton distribution functions with respect to the momentum fraction variable $x$. These distributions can be obtained from suitable equal time, quark bilinear hadronic matrix elements which can be calculated from first principles in lattice QCD, as it has been recently argued. In this talk I present the first numerical calculation of the Ioffe-time distributions of the nucleon in the quenched approximation.
The quasi-PDF approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization effects starting at first order in the lattice spacing $a$. Therefore, it is important to demonstrate that the continuum limit can be reliably taken and to understand the size and shape of lattice artifacts. In this work, we report a calculation of isovector unpolarized and helicity PDFs using lattice ensembles with $N_f=2+1+1$ Wilson twisted mass fermions, a pion mass of approximately 370 MeV, and three different lattice spacings. Our results show a significant dependence on $a$, and the continuum extrapolation produces a better agreement with phenomenology. The latter is particularly true for the antiquark distribution at small momentum fraction $x$, where the extrapolation changes its sign.
217 - Shigemi Ohta KEK 2014
Analyses on possible systematics in some isovector nucleon observables in the RBC+UKQCD 2+1-flavor dynamical domain-wall fermion (DWF) lattice-QCD are presented. The vector charge, axial charge, quark momentum and helicity fractions, and transversity are discussed using mainly the Iwasaki(times)DSDR ensemble at pion mass of 170 MeV. No autocorrelation issue is observed in the vector charge and quark momentum and helicity fractions. Blocked Jack-knife analyses expose significant growth of estimated error for the axial charge with increasing block sizes that are similar to or larger than the known autocorrelation time of the gauge-field topological charge. Similar growth is seen in the transversity. These two observables, however, do not seem correlated with the topological charge.
We present results for the unpolarized parton distribution function of the nucleon computed in lattice QCD at the physical pion mass. This is the first study of its kind employing the method of Ioffe time pseudo-distributions. Beyond the reconstructi on of the Bjorken-$x$ dependence we also extract the lowest moments of the distribution function using the small Ioffe time expansion of the Ioffe time pseudo-distribution. We compare our findings with the pertinent phenomenological determinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا