ترغب بنشر مسار تعليمي؟ اضغط هنا

$rho$ meson decay from the lattice

101   0   0.0 ( 0 )
 نشر من قبل Naruhito Ishizuka
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present preliminary results on the $rho$ meson decay width estimated from the scattering phase shift of the I=1 two-pion system. The phase shift is calculated by the finite size formula for non-zero total momentum frame (the moving frame) derived by Rummukainen and Gottlieb, using the $N_f=2$ improved Wilson fermion action at $m_pi/m_rho=0.41$ and $L=2.53 {rm fm}$.

قيم البحث

اقرأ أيضاً

We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters, the effective $rhotopipi$ coupling constant and the resonance mass, are estimated from the $P$-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, $m_pi=410,{rm MeV}$ ($m_pi/m_rho=0.46$) and $m_pi=300,{rm MeV}$ ($m_pi/m_rho=0.35$), on a $32^3times 64$ ($La=2.9,{rm fm}$) lattice at the lattice spacing $a=0.091,{rm fm}$. We compare our results at these two quark masses with those given in the previous works using $N_f=2$ full QCD configurations and the experiment.
We present a lattice QCD calculation of the $rho$ meson decay width via the $P$-wave scattering phase shift for the I=1 two-pion system. Our calculation uses full QCD gauge configurations for $N_f=2$ flavors generated using a renormalization group im proved gauge action and an improved Wilson fermion action on a $12^3times24$ lattice at $m_pi/m_rho=0.41$ and the lattice spacing $1/a=0.92 {rm GeV}$. The phase shift calculated with the use of the finite size formula for the two-pion system in the moving frame shows a behavior consistent with the existence of a resonance at a mass close to the vector meson mass obtained in spectroscopy. The decay width estimated from the phase shift is consistent with the experiment, when the quark mass is scaled to the realistic value.
179 - J. Frison , S. Durr , Z. Fodor 2010
While the masses of light hadrons have been extensively studied in lattice QCD simulations, there exist only a few exploratory calculations of the strong decay widths of hadronic resonances. We will present preliminary results of a computation of the rho meson width obtained using $N_f=2+1$ flavor simulations. The work is based on Luschers formalism and its extension to moving frames.
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters, the effective $rhotopipi$ coupling constant and the resonance mass, are estimated from the $P$-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, $m_pi=410,{rm MeV}$ ($m_pi/m_rho=0.46$) and $m_pi=300,{rm MeV}$ ($m_pi/m_rho=0.35$), on a $32^3times 64$ ($La=2.9,{rm fm}$) lattice at the lattice spacing $a=0.091,{rm fm}$. We compare our results at these two quark masses with those given in the previous works using $N_f=2$ full QCD configurations and the experiment.
132 - Vladimir M. Braun 2016
We present the results of a lattice study of the normalization constants and second moments of the light-cone distribution amplitudes of longitudinally and transversely polarized $rho$ mesons. The calculation is performed using two flavors of dynamic al clover fermions at lattice spacings between $0.060,text{fm}$ and $0.081,text{fm}$, different lattice volumes up to $m_pi L = 6.7$ and pion masses down to $m_pi=150,text{MeV}$. Bare lattice results are renormalized non-perturbatively using a variant of the RI-MOM scheme and converted to the $overline{text{MS}}$ scheme. The necessary conversion coefficients, which are not available in the literature, are calculated. The chiral extrapolation for the relevant decay constants is worked out in detail. We obtain for the ratio of the tensor and vector coupling constants $f_rho^T/f_rho^{vphantom{T}} = 0.629(8)$ and the values of the second Gegenbauer moments $a_2^parallel = 0.132(27)$ and $a_2^perp = 0.101(22)$ at the scale $mu = 2,text{GeV}$ for the longitudinally and transversely polarized $rho$ mesons, respectively. The errors include the statistical uncertainty and estimates of the systematics arising from renormalization. Discretization errors cannot be estimated reliably and are not included. In this calculation the possibility of $rhotopipi$ decay at the smaller pion masses is not taken into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا