ﻻ يوجد ملخص باللغة العربية
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters, the effective $rhotopipi$ coupling constant and the resonance mass, are estimated from the $P$-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, $m_pi=410,{rm MeV}$ ($m_pi/m_rho=0.46$) and $m_pi=300,{rm MeV}$ ($m_pi/m_rho=0.35$), on a $32^3times 64$ ($La=2.9,{rm fm}$) lattice at the lattice spacing $a=0.091,{rm fm}$. We compare our results at these two quark masses with those given in the previous works using $N_f=2$ full QCD configurations and the experiment.
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters,
On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $phi$. The lattice size is $48^3times96$, which corresponds to a spatial extension of $sim5.5$ fm
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have
We present a lattice QCD calculation of the $rho$ meson decay width via the $P$-wave scattering phase shift for the I=1 two-pion system. Our calculation uses full QCD gauge configurations for $N_f=2$ flavors generated using a renormalization group im
We present the first lattice QCD calculation with realistic sea quark content of the D^+ meson decay constant f_{D^+}. We use the MILC Collaborations publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up an