ﻻ يوجد ملخص باللغة العربية
We investigate the effects of low-lying fermion modes on the QCD partition function in the epsilon-regime. With the overlap Dirac operator we calculate several tens of low-lying fermion eigenvalues on the quenched lattice. By partially incorporating the fermion determinant through the truncated determinant approximation, we calculate the partition function and other related quantities for Nf = 1 and compare them with the theoretical predictions obtained by Leutwyler and Smilga.
We investigate the effects of low-lying fermion eigenmodes on the QCD partition function in the $epsilon$-regime. The fermion determinant is approximated by a truncated product of low-lying eigenvalues of the overlap-Dirac operator. With two flavors
The positive-parity nucleon spectrum is explored in $2 + 1$-flavour lattice QCD in a search for new low-lying energy eigenstates near the energy regime of the Roper resonance. In addition to conventional three-quark operators, we consider novel, loca
We consider how to extract the pion form factors in the epsilon regime. Using the correlators with non-zero momenta and taking appropriate ratios of them, we eliminate the dominant finite volume effect from the zero-momentum pion mode. Our preliminar
We present a numerical pilot study of the meson correlation functions in the epsilon-regime of chiral perturbation theory. Based on simulations with overlap fermions we measured the axial and pseudo-scalar correlation functions, and we discuss the im
We present simulation results for lattice QCD with chiral fermions in small volumes, where the epsilon-expansion of chiral perturbation theory applies. Our data for the low lying Dirac eigenvalues, as well as mesonic correlation functions, are in agr