ﻻ يوجد ملخص باللغة العربية
We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3) and for three different lattice couplings in the scaling region (beta = 4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t). We also verify that the (real-space) data show good scaling in the range t in [0,3] fm and can be fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated field theory and may be viewed as a manifestation of confinement.
We address the interpretation of the Landau gauge gluon propagator at finite temperature as a massive type bosonic propagator. Using pure gauge SU(3) lattice simulations at a fixed lattice volume $sim(6.5fm)^3$, we compute the electric and magnetic f
We study the SU(3) gluon propagator in renormalizable $R_xi$ gauges implemented on a symmetric lattice with a total volume of (3.25 fm)$^4$ for values of the guage fixing parameter up to $xi=0.5$. As expected, the longitudinal gluon dressing function
We report on results for the Landau gauge gluon propagator computed from large statistical ensembles and look at the compatibility of the results with the Gribov-Zwanziger tree level prediction for its refined and very refine
In lattice QCD the computation of one-particle irreducible (1PI) Greens functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the e
The quark propagator at finite temperature is investigated using quenched gauge configurations. The propagator form factors are investigated for temperatures above and below the gluon deconfinement temperature $T_c$ and for the various Matsubara freq