ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of Scintillation Efficiency and Pulse-Shape for Low Energy Recoils in Liquid Xenon

62   0   0.0 ( 0 )
 نشر من قبل Daniel R. Tovey
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV < Eee < 30 keV nuclear recoil events is equal to 21.0 ns +/- 0.5 ns. It is observed that for electron recoils T0 rises slowly with energy, having a value ~ 30 ns at Eee ~ 15 keV. Electron and nuclear recoil pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.



قيم البحث

اقرأ أيضاً

We present measurements of the scintillation pulse shape in liquid xenon for nuclear recoils (NR) and electronic recoils (ER) at electric fields of 0 to 0.5 kV/cm for energies $<$ 15 keV and $<$ 70 keV electron-equivalent, respectively. The average p ulse shapes are well-described by an effective model with two exponential decay components, where both decay times are fit parameters. We find significant broadening of the pulse for ER due to delayed luminescence from the recombination process. In addition to the effective model, we fit a model describing the recombination luminescence for ER at zero field and obtain good agreement. We estimate the best performance of a combined S2/S1 and pulse shape ER/NR discrimination and show that even with 2 ns time resolution, the improvement over S2/S1 discrimination alone is marginal, so that pulse shape discrimination will likely not be useful for future dual-phase liquid xenon experiments looking for elastic dark matter recoil interactions.
152 - K.Ueshima , K.Abe , K.Hiraide 2011
In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7pm1.1(stat)pm1.2 0.6(sys)times10-2 at energies between 4.8 and 7.2 keVee and to 7.7pm2.8(stat)pm2.5 2.8(sys)times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4pm0.2(stat)pm0.3 0.2(sys)times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations.
Liquid Xenon (LXe) is expected to be an excellent target and detector medium to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs). Knowledge of LXe ionization and scintillation response to low energy nuclear recoils e xpected from the scattering of WIMPs by Xe nuclei is important for determining the sensitivity of LXe direct detection experiments. Here we report on new measurements of the scintillation yield of Xe recoils with kinetic energy as low as 10 keV. The dependence of the scintillation yield on applied electric field was also measured in the range of 0 to 4 kV/cm. Results are in good agreement with recent theoretical predictions that take into account the effect of biexcitonic collisions in addition to the nuclear quenching effect.
Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteris tics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013-16 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46~keV, and we make a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74~keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils.
We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron bea m produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from $^{83m}$Kr internal conversion electrons is comparable to that from $^{207}$Bi conversion electrons, we obtained the numbers of excitons ($N_{ex}$) and ion pairs ($N_i$) and their ratio ($N_{ex}/N_i$) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا