ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

254   0   0.0 ( 0 )
 نشر من قبل Hugh Lippincott
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from $^{83m}$Kr internal conversion electrons is comparable to that from $^{207}$Bi conversion electrons, we obtained the numbers of excitons ($N_{ex}$) and ion pairs ($N_i$) and their ratio ($N_{ex}/N_i$) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.



قيم البحث

اقرأ أيضاً

144 - K.Ueshima , K.Abe , K.Hiraide 2011
In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7pm1.1(stat)pm1.2 0.6(sys)times10-2 at energies between 4.8 and 7.2 keVee and to 7.7pm2.8(stat)pm2.5 2.8(sys)times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4pm0.2(stat)pm0.3 0.2(sys)times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations.
Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope $alpha$-Be neutron sources were used to i nduce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
100 - T. Alexander , H. O. Back , H. Cao 2013
We have exposed a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam, produced at the Notre Dame Institute for Structure and Nuclear Astrophysics to study the scintillation light yield of recoilin g nuclei in a LAr-TPC. A liquid scintillation counter was arranged to detect and identify neutrons scattered in the LAr-TPC target and to select the energy of the recoiling nuclei. We report the observation of a significant dependence on drift field of liquid argon scintillation from nuclear recoils of 11 keV. This observation is important because, to date, estimates of the sensitivity of noble liquid TPC dark matter searches are based on the assumption that electric field has only a small effect on the light yield from nuclear recoils.
This Letter details a measurement of the ionization yield ($Q_y$) of 6.7 keV $^{40}Ar$ atoms stopping in a liquid argon detector. The $Q_y$ of 3.6-6.3 detected $e^{-}/mbox{keV}$, for applied electric fields in the range 240--2130 V/cm, is encouraging for the use of this detector medium to search for the signals from hypothetical dark matter particle interactions and from coherent elastic neutrino nucleus scattering. A significant dependence of $Q_y$ on the applied electric field is observed and explained in the context of ion recombination.
XENON10 is an experiment designed to directly detect particle dark matter. It is a dual phase (liquid/gas) xenon time-projection chamber with 3D position imaging. Particle interactions generate a primary scintillation signal (S1) and ionization signa l (S2), which are both functions of the deposited recoil energy and the incident particle type. We present a new precision measurement of the relative scintillation yield leff and the absolute ionization yield Q_y, for nuclear recoils in xenon. A dark matter particle is expected to deposit energy by scattering from a xenon nucleus. Knowledge of leff is therefore crucial for establishing the energy threshold of the experiment; this in turn determines the sensitivity to particle dark matter. Our leff measurement is in agreement with recent theoretical predictions above 15 keV nuclear recoil energy, and the energy threshold of the measurement is 4 keV. A knowledge of the ionization yield Qy is necessary to establish the trigger threshold of the experiment. The ionization yield Qy is measured in two ways, both in agreement with previous measurements and with a factor of 10 lower energy threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا