ترغب بنشر مسار تعليمي؟ اضغط هنا

Internal structure of Einstein-Yang-Mills-Dilaton black holes

95   0   0.0 ( 0 )
 نشر من قبل Mikhail Volkov
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the interior structure of the Einstein-Yang-Mills-Dilaton black holes as a function of the dilaton coupling constant $gammain [0,1]$. For $gamma eq 0$ the solutions have no internal Cauchy horizons and the field amplitudes follow a power law behavior near the singularity. As $gamma$ decreases, the solutions develop more and more oscillation cycles in the interior region, whose number becomes infinite in the limit $gammato 0$.



قيم البحث

اقرأ أيضاً

101 - B. Kleihaus 1998
In Einstein-Maxwell theory black holes are uniquely determined by their mass, their charge and their angular momentum. This is no longer true in Einstein-Yang-Mills theory. We discuss sequences of neutral and charged SU(N) Einstein-Yang-Mills black h oles, which are static spherically symmetric and asymptotically flat, and which carry Yang-Mills hair. Furthermore, in Einstein-Maxwell theory static black holes are spherically symmetric. We demonstrate that, in contrast, SU(2) Einstein-Yang-Mills theory possesses a sequence of black holes, which are static and only axially symmetric.
77 - Anindya Biswas 2021
In this paper we study Joule-Thomson $(JT)$ expansion of non-linearly charged $AdS$ black holes in Einstein-power-Yang-Mills (EPYM) gravity in $D$ dimensions. Within the framework of extended phase space thermodynamics we identify the cosmological co nstant as thermodynamic pressure and the black hole mass with the enthalpy and derive the Joule-Thomson coefficient $mu$. Furthermore we have presented equations for inversion curves and the exact expression for the minimum inversion temperature. We also have calculated the ratio between the minimum of inversion $T_i^{min}$ and the critical temperature $T_c$ and obtained the analytic expression for the ratio $frac{T_i^{min}}{T_c}$ that depends explicitly on the non-linearity parameter $q$ and dimension $D$. We consider the isenthalpic curves in the $T- P$ plane for different values of the fixed black hole mass and obtain heating and cooling region. Finally we have dealt with two limiting masses which characterizes the process of Joule-Thomson expansion in the $EPYM$ black holes.
336 - B. Kleihaus , J. Kunz , A. Sood 2001
We consider static axially symmetric Einstein-Yang-Mills black holes in the isolated horizon formalism. The mass of these hairy black holes is related to the mass of the corresponding particle-like solutions by the horizon mass. The hairy black holes violate the ``quasi-local uniqueness conjecture, based on the horizon charges.
144 - Maria Okounkova 2019
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order -reduced Einstein dilaton Gauss-Bonnet gravity (EDGB), a higher curvature beyond-GR theory with motivations in string theory. The stability of single, rotating black holes in EDGB is unknown, but is a necessary condition for being able to simulate binary black hole systems (especially the early-inspiral and late ringdown stages) in EDGB. We thus investigate the stability of rotating black holes in order-reduced EDGB. We evolve the leading-order EDGB scalar field and EDGB spacetime metric deformation on a rotating black hole background, for a variety of spins. We find that the EDGB metric deformation exhibits linear growth, but that this level of growth exponentially converges to zero with numerical resolution. Thus, we conclude that rotating black holes in EDGB are numerically stable to leading-order, thus satisfying our necessary condition for performing binary black hole simulations in EDGB.
We study the nonlinear evolution of the spherical symmetric black holes under a small neutral scalar field perturbation in Einstein-Maxwell-dilaton theory with coupling function $f(phi)=e^{-bphi}$ in asymptotic anti-de Sitter spacetime. The non-minim al coupling between scalar and Maxwell fields allows the transmission of the energy from the Maxwell field to the scalar field, but also behaves as a repulsive force for the scalar. The scalar field oscillates with damping amplitude and converges to a final value by a power law. The irreducible mass of the black hole increases abruptly at initial times and then saturates to the final value exponentially. The saturating rate is twice the decaying rate of the dominant mode of the scalar. The effects of the black hole charge, the cosmological constant and the coupling parameter on the evolution are studied in detail. When the initial configuration is a naked singularity spacetime with a large charge to mass ratio, a horizon will form soon and hide the singularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا