ﻻ يوجد ملخص باللغة العربية
We study the nonlinear evolution of the spherical symmetric black holes under a small neutral scalar field perturbation in Einstein-Maxwell-dilaton theory with coupling function $f(phi)=e^{-bphi}$ in asymptotic anti-de Sitter spacetime. The non-minimal coupling between scalar and Maxwell fields allows the transmission of the energy from the Maxwell field to the scalar field, but also behaves as a repulsive force for the scalar. The scalar field oscillates with damping amplitude and converges to a final value by a power law. The irreducible mass of the black hole increases abruptly at initial times and then saturates to the final value exponentially. The saturating rate is twice the decaying rate of the dominant mode of the scalar. The effects of the black hole charge, the cosmological constant and the coupling parameter on the evolution are studied in detail. When the initial configuration is a naked singularity spacetime with a large charge to mass ratio, a horizon will form soon and hide the singularity.
In this paper, we study spontaneous scalarization of asymptotically anti-de Sitter charged black holes in the Einstein-Maxwell-scalar model with a non-minimal coupling between the scalar and Maxwell fields. In this model, Reissner-Nordstrom-AdS (RNAd
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit s
It is commonly known in the literature that large black holes in anti-de Sitter spacetimes (with reflective boundary condition) are in thermal equilibrium with their Hawking radiation. Focusing on black holes with event horizon of toral topology, we
Exact black hole solutions in the Einstein-Maxwell-scalar theory are constructed. They are the extensions of dilaton black holes in de Sitter or anti de Sitter universe. As a result, except for a scalar potential, a coupling function between the scal
We numerically calculate the quasinormal frequencies of the Klein-Gordon and Dirac fields propagating in a two-dimensional asymptotically anti-de Sitter black hole of the dilaton gravity theory. For the Klein-Gordon field we use the Horowitz-Hubeny m