ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological charges and quasi-charges in Absolute Parallelism

55   0   0.0 ( 0 )
 نشر من قبل Ivan L. Zhogin
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I.L. Zhogin




اسأل ChatGPT حول البحث

Absolute Parallelism (AP) has many interesting features: large symmetry group of equations; field irreducibility with respect to this group; vast list of consistent second order equations not restricted to Lagrangian ones. There is the variant of AP which solutions are free of arising singularities if D=5; in this case AP acquires topological features of nonlinear sigma-model. Starting with topological charge, one can also introduce the topological quasi-charge groups for field configurations having some symmetry. For 4D, considering symmetrical equipped 0-(sub)manifolds in R^3, we find QC-groups for some symmetries (subsets of O_3) and describe their morphisms. Differential 3-form of topological charge (dual to topological current) is derived, as well as O_3-quasi-charge 1-form. Results of topological classification of symmetric configurations in 5D case (alighting on evident parallels with the Standard Model combinatorics of fundamental particles) are announced. An example of SO_2-symmetric configuration is considered; (quasi-)charge forms (self-dual and anti-self-dual) are obtained. In conclusion, we propose a variant of experiment with single photon interference (or with bi-photon non-local correlations) which should verify a possible non-local (spaghetti-like) 5D ontology of particles.



قيم البحث

اقرأ أيضاً

We present a precise definition of a conserved quantity from an arbitrary covariantly conserved current available in a general curved spacetime with Killing vectors. This definition enables us to define energy and momentum for matter by the volume in tegral. As a result we can compute charges of Schwarzschild and BTZ black holes by the volume integration of a delta function singularity. Employing the definition we also compute the total energy of a static compact star. It contains both the gravitational mass known as the Misner-Sharp mass in the Oppenheimer-Volkoff equation and the gravitational binding energy. We show that the gravitational binding energy has the negative contribution at maximum by 68% of the gravitational mass in the case of a constant density. We finally comment on a definition of generators associated with a vector field on a general curved manifold.
Phonon trapping has an immense impact in many areas of science and technology, from the antennas of interferometric gravitational wave detectors to chip-scale quantum micro- and nano-mechanical oscillators. It usually relies on the mechanical suspens ion--an approach, while isolating selected vibrational modes, leads to serious drawbacks for interrogation of the trapped phonons, including limited heat capacity and excess noises via measurements. To circumvent these constraints, we realize a new paradigm of phonon trapping using mechanical bound states in the continuum (BICs) with topological features and conducted an in-depth characterization of the mechanical losses both at room and cryogenic temperatures. Our findings of mechanical BICs combining the microwave frequency and macroscopic size unveil a unique platform for realizing mechanical oscillators in both classical and quantum regimes. The paradigm of mechanical BICs might lead to unprecedented sensing modalities for applications such as rare-event searches and the exploration of the foundations of quantum mechanics in unreached parameter spaces.
Following the recent work of Henneaux and Troessaert, which revisits the problem of spacetime symmetries at spatial infinity, we analyze this problem using the Bondi metric without determinant condition as our starting point. It turns out that in thi s case the symmetries at spatial infinity form the BMS symmetry appended with an additional infinite set of abelian symmetries. We furthermore find that imposing the determinant condition to the Bondi metric would result in a drastic reduction of symmetries, with no spatial (super) translations present.
We discuss some new developments in three-dimensional gravity with torsion, based on Riemann-Cartan geometry. Using the canonical approach, we study the structure of asymptotic symmetry, clarify its fundamental role in defining the gravitational cons erved charges, and explore the influence of the asymptotic structure on the black hole entropy.
86 - I.L. Zhogin 2011
There is a unique variant of Absolute Parallelism, which is very simple as it has no free parameters: nothing (nor D=5) can be changed if to keep the theory safe from emerging singularities of solutions. On the contrary, eternal solutions of this t heory, due to the linear instability of the trivial solution, should be of great complexity which can in some scenarios (with a set of slowly varying parameters of solutions) provide a few phenomenological models including a modified (better to say, new or another) gravity and an expanding-shell cosmology (the longitudinal polarization gives the anti-Milne model). The former looks (mostly) like a variant of tensor-Ricci-squared gravity on a brane of a huge scale L along the extra-dimension. The correction to Newtons law of gravity, which depends in this theory on two parameters (bi-Laplace equation) and behaves as 1/r on large scales, r>L (kpc>L>pc), can start from zero (the Rindler term vanishes) if a constraint is imposed on these parameters. On further consideration, one can conclude that generation of gravitational `short waves, lambda<L, is inhibited in this new gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا