ﻻ يوجد ملخص باللغة العربية
We demonstrate the use of automatic Bayesian inference for the analysis of LISA data sets. In particular we describe a new automatic Reversible Jump Markov Chain Monte Carlo method to evaluate the posterior probability density functions of the a priori unknown number of parameters that describe the gravitational wave signals present in the data. We apply the algorithm to a simulated LISA data set containing overlapping signals from white dwarf binary systems (DWD) and to a separate data set containing a signal from an extreme mass ratio inspiral (EMRI). We demonstrate that the approach works well in both cases and can be regarded as a viable approach to tackle LISA data analysis challenges.
In this paper we describe a Bayesian inference framework for analysis of data obtained by LISA. We set up a model for binary inspiral signals as defined for the Mock LISA Data Challenge 1.2 (MLDC), and implemented a Markov chain Monte Carlo (MCMC) al
The Laser Interferometer Space Antenna (LISA) is expected to simultaneously detect many thousands of low frequency gravitational wave signals. This presents a data analysis challenge that is very different to the one encountered in ground based gravi
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has de
This work presents the first application of the method of Genetic Algorithms (GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In the low frequency regime of the LISA band there are expected to be tens of thousands galactic bi
We report on the analysis of selected single source data sets from the first round of the Mock LISA Data Challenges (MLDC) for white dwarf binaries. We implemented an end-to-end pipeline consisting of a grid-based coherent pre-processing unit for sig