ﻻ يوجد ملخص باللغة العربية
In the macroscopic gravity approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a FLRW background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the back-reaction) in an FLRW background, which support the main conclusions of the analysis.
We use the 1+3 frame formalism to write down the evolution equations for spherically symmetric models as a well-posed system of first order PDEs in two variables, suitable for numerical and qualitative analysis.
We discuss the averaging problem in general relativity, using the form of the macroscopic gravity equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate the form of the correlation tensor under some
We present a framework for studying gravitational lensing in spherically symmetric spacetimes using 1+1+2 covariant methods. A general formula for the deflection angle is derived and we show how this can be used to recover the standard result for the Schwarzschild spacetime.
General relativity can be formulated equivalently with a non-Riemannian geometry that associates with an affine connection of nonzero nonmetricity $Q$ but vanishing curvature $R$ and torsion $T$. Modification based on this description of gravity
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchav{r} in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-S