ﻻ يوجد ملخص باللغة العربية
Fewster and Mistry have given an explicit, non-optimal quantum weak energy inequality that constrains the smeared energy density of Dirac fields in Minkowski spacetime. Here, their argument is adapted to the case of flat, two-dimensional spacetime. The non-optimal bound thereby obtained has the same order of magnitude, in the limit of zero mass, as the optimal bound of Vollick. In contrast with Vollicks bound, the bound presented here holds for all (non-negative) values of the field mass.
To extend previous results on the late time behavior of massive fields, for the Dirac field propagating in the D-dimensional Minkowski spacetime we calculate analytically its asymptotic tails. We find that the massive Dirac field has an oscillatory i
The definition of the Hamiltonian operator H for a general wave equa-tion in a general spacetime is discussed. We recall that H depends on the coordinate system merely through the corresponding reference frame. When the wave equation involves a gauge
We investigate the matching, across cylindrical surfaces, of static cylindrically symmetric conformally flat spacetimes with a cosmological constant $Lambda$, satisfying regularity conditions at the axis, to an exterior Linet-Tian spacetime. We prove
We study a false vacuum decay in a two-dimensional black hole spacetime background. The decay rate in the case that nucleation site locates at a black hole center has been calculated in the literature. We develop a method for calculating the decay ra
The gravitational lensing effects in the weak gravitational field by exotic lenses have been investigated intensively to find nonluminous exotic objects. Gravitational lensing based on 1/r^n fall-off metric, as a one-parameter model that can treat by