ﻻ يوجد ملخص باللغة العربية
To extend previous results on the late time behavior of massive fields, for the Dirac field propagating in the D-dimensional Minkowski spacetime we calculate analytically its asymptotic tails. We find that the massive Dirac field has an oscillatory inverse power law tail. The frequency of the oscillations depends on the mass of the field and the power law decay rate depends on the dimension of the spacetime and the mode number of the angular eigenvalues. We also compare with previous results in curved spacetimes.
Outside a black hole, perturbation fields die off in time as $1/t^n$. For spherical holes $n=2ell+3$ where $ell$ is the multipole index. In the nonspherical Kerr spacetime there is no coordinate-independent meaning of multipole, and a common sense vi
Fewster and Mistry have given an explicit, non-optimal quantum weak energy inequality that constrains the smeared energy density of Dirac fields in Minkowski spacetime. Here, their argument is adapted to the case of flat, two-dimensional spacetime. T
In a D-dimensional Lifshitz black hole we calculate exactly the quasinormal frequencies of a test Dirac field in the massless and zero angular eigenvalue limits. These results are an extension of the previous calculations in which the quasinormal fre
We study the foliation of a $D$-dimensional spherically symmetric black-hole spacetime with $Dge 5$ by two kinds of one-parameter family of maximal hypersurfaces: a reflection-symmetric foliation with respect to the wormhole slot and a stationary fol
We perform numerical simulations of the approach to spacetime singularities. The simulations are done with sufficient resolution to resolve the small scale features (known as spikes) that form in this process. We find an analytical formula for the sh