ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandit Problems with Side Observations

105   0   0.0 ( 0 )
 نشر من قبل Chih-Chun Wang
 تاريخ النشر 2005
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Chih-Chun Wang




اسأل ChatGPT حول البحث

An extension of the traditional two-armed bandit problem is considered, in which the decision maker has access to some side information before deciding which arm to pull. At each time t, before making a selection, the decision maker is able to observe a random variable X_t that provides some information on the rewards to be obtained. The focus is on finding uniformly good rules (that minimize the growth rate of the inferior sampling time) and on quantifying how much the additional information helps. Various settings are considered and for each setting, lower bounds on the achievable inferior sampling time are developed and asymptotically optimal adaptive schemes achieving these lower bounds are constructed.

قيم البحث

اقرأ أيضاً

By exploiting the computing power and local data of distributed clients, federated learning (FL) features ubiquitous properties such as reduction of communication overhead and preserving data privacy. In each communication round of FL, the clients up date local models based on their own data and upload their local updates via wireless channels. However, latency caused by hundreds to thousands of communication rounds remains a bottleneck in FL. To minimize the training latency, this work provides a multi-armed bandit-based framework for online client scheduling (CS) in FL without knowing wireless channel state information and statistical characteristics of clients. Firstly, we propose a CS algorithm based on the upper confidence bound policy (CS-UCB) for ideal scenarios where local datasets of clients are independent and identically distributed (i.i.d.) and balanced. An upper bound of the expected performance regret of the proposed CS-UCB algorithm is provided, which indicates that the regret grows logarithmically over communication rounds. Then, to address non-ideal scenarios with non-i.i.d. and unbalanced properties of local datasets and varying availability of clients, we further propose a CS algorithm based on the UCB policy and virtual queue technique (CS-UCB-Q). An upper bound is also derived, which shows that the expected performance regret of the proposed CS-UCB-Q algorithm can have a sub-linear growth over communication rounds under certain conditions. Besides, the convergence performance of FL training is also analyzed. Finally, simulation results validate the efficiency of the proposed algorithms.
A sensing policy for the restless multi-armed bandit problem with stationary but unknown reward distributions is proposed. The work is presented in the context of cognitive radios in which the bandit problem arises when deciding which parts of the sp ectrum to sense and exploit. It is shown that the proposed policy attains asymptotically logarithmic weak regret rate when the rewards are bounded independent and identically distributed or finite state Markovian. Simulation results verifying uniformly logarithmic weak regret are also presented. The proposed policy is a centrally coordinated index policy, in which the index of a frequency band is comprised of a sample mean term and a confidence term. The sample mean term promotes spectrum exploitation whereas the confidence term encourages exploration. The confidence term is designed such that the time interval between consecutive sensing instances of any suboptimal band grows exponentially. This exponential growth between suboptimal sensing time instances leads to logarithmically growing weak regret. Simulation results demonstrate that the proposed policy performs better than other similar methods in the literature.
A general information transmission model, under independent and identically distributed Gaussian codebook and nearest neighbor decoding rule with processed channel output, is investigated using the performance metric of generalized mutual information . When the encoder and the decoder know the statistical channel model, it is found that the optimal channel output processing function is the conditional expectation operator, thus hinting a potential role of regression, a classical topic in machine learning, for this model. Without utilizing the statistical channel model, a problem formulation inspired by machine learning principles is established, with suitable performance metrics introduced. A data-driven inference algorithm is proposed to solve the problem, and the effectiveness of the algorithm is validated via numerical experiments. Extensions to more general information transmission models are also discussed.
We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret n otion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can be minimized with respect to the family of all probability distributions with continuous mean-payoff functions.
In this paper, we consider several finite-horizon Bayesian multi-armed bandit problems with side constraints which are computationally intractable (NP-Hard) and for which no optimal (or near optimal) algorithms are known to exist with sub-exponential running time. All of these problems violate the standard exchange property, which assumes that the reward from the play of an arm is not contingent upon when the arm is played. Not only are index policies suboptimal in these contexts, there has been little analysis of such policies in these problem settings. We show that if we consider near-optimal policies, in the sense of approximation algorithms, then there exists (near) index policies. Conceptually, if we can find policies that satisfy an approximate version of the exchange property, namely, that the reward from the play of an arm depends on when the arm is played to within a constant factor, then we have an avenue towards solving these problems. However such an approximate version of the idling bandit property does not hold on a per-play basis and are shown to hold in a global sense. Clearly, such a property is not necessarily true of arbitrary single arm policies and finding such single arm policies is nontrivial. We show that by restricting the state spaces of arms we can find single arm policies and that these single arm policies can be combined into global (near) index policies where the approximate version of the exchange property is true in expectation. The number of different bandit problems that can be addressed by this technique already demonstrate its wide applicability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا