ﻻ يوجد ملخص باللغة العربية
The electronic excitations at the edges of a Hall bar not much wider than a few magnetic lengths are studied theoretically at filling $ u = 2$. Both mean-field theory and Luttinger liquid theory techniques are employed for the case of a null Zeeman energy splitting. The first calculation yields a stable spin-density wave state along the bar, while the second one predicts dominant Wigner-crystal correlations along the edges of the bar. We propose an antiferromagnetic Wigner-crystal groundstate for the edge electrons that reconciles the two results. A net Zeeman splitting is found to produce canting of the antiferromagnetic order.
We report on results of numerical studies of the spin polarization of the half filled second Landau level, which corresponds to the fractional quantum Hall state at filling factor $ u=5/2$. Our studies are performed using both exact diagonalization a
We present a comprehensive numerical study of a microscopic model of the fractional quantum Hall system at filling fraction $ u = 5/2$, based on the disc geometry. Our model includes Coulomb interaction and a semi-realistic confining potential. We al
We report quantitative measurements of the impact of alloy disorder on the $ u=5/2$ fractional quantum Hall state. Alloy disorder is controlled by the aluminum content $x$ in the Al$_x$Ga$_{1-x}$As channel of a quantum well. We find that the $ u=5/2$
We observe fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor $ u=1/2$ in two-dimensional hole systems confined to GaAs quantum wells of width 30 to 50 nm and having bilayer-like charge distributions. The $ u=1/
We experimentally study equilibration across the sample edge at high fractional filling factors 4/3, 5/3 under experimental conditions, which allow us to obtain high imbalance conditions. We find a lack of the full equilibration across the edge even