ﻻ يوجد ملخص باللغة العربية
We discuss the scaling of characteristic lengths in diffusion limited aggregation (DLA) clusters in light of recent developments using conformal maps. We are led to the conjecture that the apparently anomalous scaling of lengths is due to one slow crossover. This is supported by an analytical argument for the scaling of the penetration depth of newly arrived random walkers, and by numerical evidence on the Laurent coefficients which uniquely determine each cluster. We find a single crossover exponent of -0.3 for all the characteristic lengths in DLA. This gives a hint about the structure of the renormalization group for this problem.
Diffusion-limited aggregation is consistent with simple scaling. However, strong subdominant terms are present, and these can account for various earlier claims of anomalous scaling. We show this in detail for the case of multiscaling.
We performed extensive numerical simulation of diffusion-limited aggregation in two dimensional channel geometry. Contrary to earlier claims, the measured fractal dimension D = 1.712 +- 0.002 and its leading correction to scaling are the same as in t
We investigate diffusion-limited aggregation (DLA) in a wedge geometry. Arneodo and collaborators have suggested that the ensemble average of DLA cluster density should be close to the noise-free selected Saffman-Taylor finger. We show that a differe
A scaling theory is developed for diffusion-limited cluster aggregation in a porous medium, where the primary particles and clusters stick irreversibly to the walls of the pore space as well as to each other. Three scaling regimes are predicted, conn
The method of iterated conformal maps allows to study the harmonic measure of Diffusion Limited Aggregates with unprecedented accuracy. We employ this method to explore the multifractal properties of the measure, including the scaling of the measure