ترغب بنشر مسار تعليمي؟ اضغط هنا

Random walks, diffusion limited aggregation in a wedge, and average conformal maps

102   0   0.0 ( 0 )
 نشر من قبل Leonard M. Sander
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate diffusion-limited aggregation (DLA) in a wedge geometry. Arneodo and collaborators have suggested that the ensemble average of DLA cluster density should be close to the noise-free selected Saffman-Taylor finger. We show that a different, but related, ensemble average, that of the conformal maps associated with random clusters, yields a non-trivial shape which is also not far from the Saffman-Taylor finger. However, we have previously demonstrated that the same average of DLA in a channel geometry is not the Saffman-Taylor finger. This casts doubt on the idea that the average of noisy diffusion-limited growth is governed by a simple transcription of noise-free results.



قيم البحث

اقرأ أيضاً

73 - E. Somfai , L. M. Sander , 1999
We discuss the scaling of characteristic lengths in diffusion limited aggregation (DLA) clusters in light of recent developments using conformal maps. We are led to the conjecture that the apparently anomalous scaling of lengths is due to one slow cr ossover. This is supported by an analytical argument for the scaling of the penetration depth of newly arrived random walkers, and by numerical evidence on the Laurent coefficients which uniquely determine each cluster. We find a single crossover exponent of -0.3 for all the characteristic lengths in DLA. This gives a hint about the structure of the renormalization group for this problem.
185 - Ellak Somfai 2003
We performed extensive numerical simulation of diffusion-limited aggregation in two dimensional channel geometry. Contrary to earlier claims, the measured fractal dimension D = 1.712 +- 0.002 and its leading correction to scaling are the same as in t he radial case. The average cluster, defined as the average conformal map, is similar but not identical to Saffman-Taylor fingers.
63 - Ellak Somfai 2002
Diffusion-limited aggregation is consistent with simple scaling. However, strong subdominant terms are present, and these can account for various earlier claims of anomalous scaling. We show this in detail for the case of multiscaling.
In this minireview we present the main results regarding the transport properties of stochastic movement with relocations to known positions. To do so, we formulate the problem in a general manner to see several cases extensively studied during the l ast years as particular situations within a framework of random walks with memory. We focus on (i) stochastic motion with resets to its initial position followed by a waiting period, and (ii) diffusive motion with memory-driven relocations to previously visited positions. For both of them we show how the overall transport regime may be actively modified by the details of the relocation mechanism.
245 - S. Eule , R. Friedrich , F. Jenko 2008
We formulate the generalized master equation for a class of continuous time random walks in the presence of a prescribed deterministic evolution between successive transitions. This formulation is exemplified by means of an advection-diffusion and a jump-diffusion scheme. Based on this master equation, we also derive reaction-diffusion equations for subdiffusive chemical species, using a mean field approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا