ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended surface disorder in the quantum Ising chain

60   0   0.0 ( 0 )
 نشر من قبل Loic Turban
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider random extended surface perturbations in the transverse field Ising model decaying as a power of the distance from the surface towards a pure bulk system. The decay may be linked either to the evolution of the couplings or to their probabilities. Using scaling arguments, we develop a relevance-irrelevance criterion for such perturbations. We study the probability distribution of the surface magnetization, its average and typical critical behaviour for marginal and relevant perturbations. According to analytical results, the surface magnetization follows a log-normal distribution and both the average and typical critical behaviours are characterized by power-law singularities with continuously varying exponents in the marginal case and essential singularities in the relevant case. For enhanced average local couplings, the transition becomes first order with a nonvanishing critical surface magnetization. This occurs above a positive threshold value of the perturbation amplitude in the marginal case.



قيم البحث

اقرأ أيضاً

88 - D. J. Priour Jr , 2000
We study a one-dimensional chain of corner-sharing triangles with antiferromagnetic Ising interactions along its bonds. Classically, this system is highly frustrated with an extensive entropy at T = 0 and exponentially decaying spin correlations. We show that the introduction of a quantum dynmamics via a transverse magnetic field removes the entropy and opens a gap, but leaves the ground state disordered at all values of the transverse field, thereby providing an analog of the disorder by disorder scenario first proposed by Anderson and Fazekas in their search for resonating valence bond states. Our conclusion relies on exact diagonalization calculations as well as on the analysis of a 14th order series expansion about the large transverse field limit. This test suggests that the series method could be used to search for other instances of quantum disordered states in frustrated transverse field magnets in higher dimensions.
Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study t he OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a shell-like structure: after the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a $t^{-1}$ power law at long time $t$. On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a ball-like structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law $t^{-1/4}$ for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a ball-like structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.
72 - Masaki Oshikawa 2019
I study the universal finite-size scaling function for the lowest gap of the quantum Ising chain with a one-parameter family of ``defect boundary conditions, which includes periodic, open, and antiperiodic boundary conditions as special cases. The un iversal behavior can be described by the Majorana fermion field theory in $1+1$ dimensions, with the mass proportional to the deviation from the critical point. Although the field theory appears to be symmetric with respect to the inversion of the mass (Kramers-Wannier duality), the actual gap is asymmetric, reflecting the spontaneous symmetry breaking in the ordered phase which leads to the two-fold ground-state degeneracy in the thermodynamic limit. The asymptotic ground-state degeneracy in the ordered phase is realized by (i) formation of a bound state at the defect (except for the periodic/antiperiodic boundary condition) and (ii) effective reversal of the fermion number parity in one of the sectors (except for the open boundary condition), resulting in a rather nontrivial crossover ``phase diagram in the space of the boundary condition (defect strength) and mass.
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the presence of marginal or relevant geometric fluctuations induced by aperiodicity, for which the critical behavior is expected to depart from the Onsager universality class, we derive analytical and asymptotically exact expressions for various critical exponents (including the correlation-length and the magnetization exponents, which are not easily obtainable by other methods), and shed light onto the nature of the ground state structures in the neighborhood of the critical point. The main results obtained by this approach are confirmed by finite-size scaling analyses of numerical calculations based on the free-fermion method.
Taking one-dimensional random transverse Ising model (RTIM) with the double-Gaussian disorder for example, we investigated the spin autocorrelation function (SAF) and associated spectral density at high temperature by the recursion method. Based on t he first twelve recurrants obtained analytically, we have found strong numerical evidence for the long-time tail in the SAF of a single spin. Numerical results indicate that when the standard deviation {sigma}_{JS} (or {sigma}_{BS}) of the exchange couplings J_{i} (or the random transverse fields B_{i}) is small, no long-time tail appears in the SAF. The spin system undergoes a crossover from a central-peak behavior to a collective-mode behavior, which is the dynamical characteristics of RTIM with the bimodal disorder. However, when the standard deviation is large enough, the system exhibits similar dynamics behaviors to those of the RTIM with the Gaussian disorder, i.e., the system exhibits an enhanced central-peak behavior for large {sigma}_{JS} or a disordered behavior for large {sigma}_{BS}. In this instance, the long-time tails in the SAFs appear, i.e., C(t)simt^{-2}. Similar properties are obtained when the random variables (J_{i} or B_{i}) satisfy other distributions such as the double-exponential distribution and the double-uniform distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا