ترغب بنشر مسار تعليمي؟ اضغط هنا

Out-of-time-ordered correlators in quantum Ising chain

166   0   0.0 ( 0 )
 نشر من قبل Cheng-Ju Lin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a shell-like structure: after the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a $t^{-1}$ power law at long time $t$. On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a ball-like structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law $t^{-1/4}$ for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a ball-like structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.



قيم البحث

اقرأ أيضاً

130 - Hua Yan , Jiaozi Wang , 2019
Previous studies show that, in quantum chaotic and integrable systems, the so-called out-of-time-ordered correlator (OTOC) generically behaves differently at long times, while, it may show similar early growth in one-body systems. In this paper, by m eans of numerical simulations, it is shown that OTOC has similar early growth in two quantum many-body systems, one integrable and one chaotic.
We consider a quantum Brownian particle interacting with two harmonic baths, which is then perturbed by a cubic coupling linking the particle and the baths. This cubic coupling induces non-linear dissipation and noise terms in the influence functiona l/master equation of the particle. Its effect on the Out-of-Time-Ordered Correlators (OTOCs) of the particle cannot be captured by the conventional Feynman-Vernon formalism.We derive the generalised influence functional which correctly encodes the physics of OTO fluctuations, response, dissipation and decoherence. We examine an example where Markovian approximation is valid for the OTO dynamics. If the original cubic coupling has a definite time-reversal parity, the leading order OTO influence functional is completely determined by the couplings in the usual master equation via OTO generalisation of Onsager-Casimir relations. New OTO fluctuation-dissipation relations connect the non-Gaussianity of the thermal noise to the thermal jitter in the damping constant of the Brownian particle.
We study the spatial spread of out-of-time-ordered correlators (OTOCs) in coupled map lattices (CMLs) of quasiperiodically forced nonlinear maps. We use instantaneous speed (IS) and finite-time Lyapunov exponents (FTLEs) to investigate the role of st range non-chaotic attractors (SNAs) on the spatial spread of the OTOC. We find that these CMLs exhibit a characteristic on and off type of spread of the OTOC for SNA. Further, we provide a broad spectrum of the various dynamical regimes in a two-parameter phase diagram using IS and FTLEs. We substantiate our results by confirming the presence of SNA using established tools and measures, namely the distribution of finite-time Lyapunov exponents, phase sensitivity, spectrum of partial Fourier sums, and $0-1$ test.
Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are challenging analytically and exponentially difficult to simulate on classical computers. Small-sc ale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally challenging, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3x3 two-dimensional hard-core Bose-Hubbard lattice with a superconducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which we achieve with a digital-analog simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present, a possible signature of many-body localization in two dimensions.
Out-of-time-order correlators (OTOC) are considered to be a promising tool to characterize chaos in quantum systems. In this paper we study OTOC in XY model. With the presence of anisotropic parameter $gamma$ and external magnetic field $lambda$ in t he Hamiltonian, we mainly focus on their influences on OTOC in thermodynamical limit. We find that the butterfly speed $v_B$ is dependent of these two parameters, and the recent conjectured universal form which characterizes the wavefront of chaos spreading are proved to be positive with varying $v_B$ in different phases of XY model. Moreover, we also study the behaviors of OTOC with fixed location, and we find that the early-time part fully agrees with the results derived from Hausdorff-Baker-Campbell expansion. The long-time part is studied either, while in the local case $C(t)$ decay as power law $t^{-1}$, $|F(t)|$ with nonlocal operators show quite interesting and nontrivial power law decay corresponding to different choices of operators and models. At last, we observe temperature dependence for OTOC with local operators at ($gamma=0, lambda=1$), and divergent behavior with low temperature for nonlocal operator case at late time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا