ﻻ يوجد ملخص باللغة العربية
The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility $chi (T) $ approaches zero temperature with an infinite slope in striking contrast with the Fermi liquid result and with the behavior of the compressibility in the absence of umklapp scattering. This effect comes from the leading marginally irrelevant operator, in analogy with the Heisenberg spin 1/2 antiferromagnetic chain. Comparisons with Monte Carlo simulations at higher temperature reveal that non-logarithmic terms are important in that regime. These contributions are evaluated from an effective interaction that includes the same set of diagrams as those that give the leading logarithmic terms in the renormalization group approach. Comments on the third law of thermodynamics as well as reasons for the failure of approaches that work in higher dimensions are given.
The theoretical model of the short-range interacting Luttinger liquid predicts a power-law scaling of the density of states and the momentum distribution function around the Fermi surface, which can be readily tested through tunneling experiments. Ho
Spin correlations in an interacting electron liquid are studied in the high-frequency limit and in both two and three dimensions. The third-moment sum rule is evaluated and used to derive exact limiting forms (at both long- and short-wavelengths) for
We introduce the topological mirror excitonic insulator as a new type of interacting topological crystalline phase in one dimension. Its mirror-symmetry-protected topological properties are driven by exciton physics, and it manifests in the quantized
It is well-known that, generically, the one-dimensional interacting fermions cannot be described in terms of the Fermi liquid. Instead, they present different phenomenology, that of the Tomonaga-Luttinger liquid: the Landau quasiparticles are ill-def
We report 13C nuclear magnetic resonance measurements on single wall carbon nanotube (SWCNT) bundles. The temperature dependence of the nuclear spin-lattice relaxation rate, 1/T1, exhibits a power-law variation, as expected for a Tomonage-Luttinger l