ﻻ يوجد ملخص باللغة العربية
Spin correlations in an interacting electron liquid are studied in the high-frequency limit and in both two and three dimensions. The third-moment sum rule is evaluated and used to derive exact limiting forms (at both long- and short-wavelengths) for the spin-antisymmetric local-field factor, $lim_{omega to infty}G_-({bf q, omega})$. In two dimensions $lim_{omega to infty}G_-({bf q, omega})$ is found to diverge as $1/q$ at long wavelengths, and the spin-antisymmetric exchange-correlation kernel of time-dependent spin density functional theory diverges as $1/q^2$ in both two and three dimensions. These signal a failure of the local-density approximation, one that can be redressed by alternative approaches.
We find that the spin susceptibility of a two-dimensional electron system with valley degeneracy does not grow critically at low densities, at variance with experimental results [A. Shashkin et al., Phys. Rev. Lett. 96, 036403 (2006)]. We ascribe thi
The temperature-dependent uniform magnetic susceptibility of interacting electrons in one dimension is calculated using several methods. At low temperature, the renormalization group reaveals that the Luttinger liquid spin susceptibility $chi (T) $ a
We consider a two-dimensional disordered conductor in the regime when the superconducting phase is destroyed by the magnetic field. We observe that the end point of the superconductivity is a quantum critical point separating the conventional superco
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontan
The electronic band structure of bulk ferromagnetic iron is explored by angle-resolved photoemission for electron correlation effects. Fermi surface cross-sections as well as band maps are contrasted with density functional calculations. The Fermi ve